Rocket tracking impact point prediction using α-β, standard Kalman, extended, Kalman, and unscented Kalman filters: a comparative analysis

Accurate information about the impact point (IP) of a suborbital rocket on Earth’s surface during a launch is an important requirement for range safety operations. Four different estimators, i.e., the α-β filter, standard Kalman filter (SKF), extended Kalman filter (EKF), and unscented Kalman filter (UKF), are considered for the suborbital rocket tracking problem, whose data are used specifically for improving the accuracy of the IP prediction (IPP) of these vehicles. This paper presents a comparative analysis between the results of the estimators. Rocket flight data are discussed to demonstrate the advantages and disadvantages of the estimators and to determine the inherent limitations in predicting the aerodynamic effects found in certain flight situations. We discuss the appropriate mathematical model of a filter capable of running the real-time algorithm for the estimation of target position and velocity. This work uses actual data from a radar sensor to evaluate the tracking algorithms. We insert the filter result into the mathematical model developed to predict the rocket IP on Earth's surface. The main goal of this study is to evaluate the performance of four different estimators when specifically applied for the improvement of the IPP of suborbital rockets. It is demonstrated that the UKF outperforms all other tracking algorithms in terms of the accuracy and robustness of IP estimation.