Spatiotemporal evolution of a unique preserved meandering system in Central Europe — The Morava River near Litovel

Abstract Rivers are naturally dynamic over time and space and respond to the variability of water and sediment inputs and to anthropogenic pressures that cause changes to the river's behaviour and form. This study describes the evolution of part of the Morava River and the Kenický meander in the Litovelske Pomoravi protected area near the city of Olomouc. The research describes the historical development of the study area using aerial photos, UAV images and geodetic measurements. Long-term measurements and imaging using UAV technologies have allowed a large amount of information to be collected. This information was used to study the Kenický meander and the Morava River. Significant lateral channel changes in the banks have occurred in the past and generated the Kenický meander. A significant event occurred in the spring of 2012, when high water levels were caused a rupture of a meander-natural cutoff. The water level was monitored in the Kenický wood accumulation, which formed in the Kenický meander, before and after the rupture. Monitoring the movement of wood in the river basin is particularly important because the movement of ice in the winter can cause blockage of the channel and subsequent flooding of water over the banks and into the surrounding communities.

[1]  R. Hey,et al.  Middle Danube tributaries : Constraints and opportunities in lowland river restoration , 2003 .

[2]  J. Hooke Processes of channel planform change on meandering channels in the UK , 1995 .

[3]  G. Pautou,et al.  A method for applied ecological studies of fluvial hydrosystems , 1987 .

[4]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[5]  Lukáš Krejčí,et al.  Plavená dřevní hmota (spláví) v korytech vodních toků -případová studie z CHKO Litovelské Pomoraví , 2006 .

[6]  Martin Culek,et al.  Biogeografické členění České republiky , 1996 .

[7]  F. D. Shields,et al.  Sediment deposition in cutoff meander bends and implications for effective management , 1989 .

[8]  Hans Middelkoop,et al.  Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment , 2008 .

[9]  M. Wolman,et al.  Downstream effects of dams on alluvial rivers. , 1984 .

[10]  J. Kail,et al.  Influence of large woody debris on the morphology of six central European streams , 2003 .

[11]  Klement Tockner,et al.  Effects of deposited wood on biocomplexity of river corridors , 2005 .

[12]  J. Bridge,et al.  Sedimentology and morphology of a low-sinuosity river: Calamus River, Nebraska Sand Hills , 1986 .

[13]  Stanley V. Gregory,et al.  Modeling inputs of large woody debris to streams from falling trees , 1990 .

[14]  G. Amorós,et al.  Aquatic vegetation and hydrology of a braided river floodplain , 1991 .

[15]  Hervé Piégay,et al.  Hyperspatial Imagery in Riverine Environments , 2012 .

[16]  Lukáš Krejčí,et al.  Dřevní hmota v říčních korytech - zdroje, objem, distribuce ainterakce s fluviálními tvary (případová studie z NPR Ramenařeky Moravy, CHKO Litovelské Pomoraví) , 2006 .

[17]  D. Montgomery,et al.  LARGE WOODY DEBRIS JAMS, CHANNEL HYDRAULICS AND HABITAT FORMATION IN LARGE RIVERS , 1996 .

[18]  T. Kiss,et al.  Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary) , 2008 .

[19]  D. Walling,et al.  Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK , 1999 .

[20]  B. Abernethy,et al.  Where along a river's length will vegetation most effectively stabilise stream banks? , 1998 .

[21]  J. R. Allen,et al.  A REVIEW OF THE ORIGIN AND CHARACTERISTICS OF RECENT ALLUVIAL SEDIMENTS , 1965 .

[22]  Lukáš Krejčí,et al.  Výskyt dřevní hmoty v korytech vodních toků České republiky , 2010 .

[23]  J. Lewin,et al.  Alluvial Cutoffs in Wales and the Borderlands , 2009 .

[24]  R. Naiman,et al.  Dead Wood Dynamics in Stream Ecosystems 1 , 2002 .

[25]  W. Erskine,et al.  ALLUVIAL CUTOFFS AS INDICATORS OF FORMER CHANNEL CONDITIONS , 1992 .

[26]  I. Marzolff,et al.  Piping as a process of gully erosion in small-format aerial pothography : A short note , 2011 .

[27]  B. Timms The conservation status of athalassic lakes in New South Wales, Australia , 1992 .

[28]  T. Czudek Reliéf Moravy a Slezska v kvartéru. , 1997 .

[29]  A. Gurnell,et al.  Wood storage and mobility , 2003 .

[30]  J. S. Aber,et al.  Small-Format Aerial Photography: Principles, Techniques and Geoscience Applications , 2010 .

[31]  Sean M. C. Smith,et al.  Hydraulic performance of a morphology‐based stream channel design , 2005 .

[32]  Hervé Piégay,et al.  A new methodology for the assessment of large woody debris accumulations on highly modified rivers (example of two French Piedmont rivers) , 1998 .

[33]  Bertrand Moulin,et al.  Utilisation de la télédétection pour la caractérisation des corridors fluviaux : exemples d'applications et enjeux actuels , 2011 .

[34]  H. Piégay,et al.  Morphodynamics of the exit of a cutoff meander: experimental findings from field and laboratory studies , 2010 .

[35]  J. Poesen,et al.  Erosion, flooding and channel management in Mediterranean environments of southern Europe , 1997 .

[36]  L. Krejci,et al.  Anthropogenic controls on large wood input, removal and mobility: examples from rivers in the Czech Republic , 2012 .

[37]  G. Kondolf,et al.  Channel erosion along the Carmel river, Monterey county, California , 1986 .

[38]  F. Swanson,et al.  EFFECTS OF LARGE ORGANIC MATERIAL ON CHANNEL FORM AND FLUVIAL PROCESSES , 1979 .

[39]  C. Amoros,et al.  Les « ensembles fonctionnels » : des entités écologiques qui traduisent l'évolution de l'hydrosystème en intégrant la géomorphologie et l'anthropisation (exemple du Haut-Rhône français) , 1982 .

[40]  Irene Marzolff,et al.  Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco , 2012, Remote. Sens..

[41]  H. Piégay,et al.  Lateral erosion of the Sacramento River, California (1942–1999), and responses of channel and floodplain lake to human influences , 2011 .

[42]  Juha Hyyppä,et al.  Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography , 2013, Remote. Sens..

[43]  S. Gagliano,et al.  The Neck Cutoff Oxbow Lake Cycle Along the Lower Mississippi River , 1984 .

[44]  Hervé Piégay,et al.  Fluvial remote sensing for science and management. , 2012 .

[45]  J. Hooke Complexity, self-organisation and variation in behaviour in meandering rivers , 2007 .

[46]  H. Piégay,et al.  Overbank sedimentation rates in former channel lakes: characterization and control factors , 2009 .

[47]  D. Montgomery,et al.  Patterns and processes of wood debris accumulation in the Queets river basin, Washington , 2003 .

[48]  J. Mirijovský UTILIZATION OF A SMALL-FORMAT AERIAL PHOTOGRAPHY FROM DRONE PIXY CONCEPT IN THE EVALUATION OF THE LANDSCAPE CHANGES , 2011 .

[49]  J. Hooke River channel adjustment to meander cutoffs on the River Bollin and River Dane, northwest England , 1995 .

[50]  J. Bridge Rivers and Floodplains: Forms, Processes, and Sedimentary Record , 2003 .