Reconfigurable Analog VLSI circuits for robot path planning

This paper presents robot path planning using reconfigurable Analog-Very-Large-Scale-Integrated (AVLSI) circuits. Existing research has shown that custom AVLSI circuits known as application-specific-integrated-circuits (ASICs) can theoretically be used for robot path planning. There are two main drawbacks to using custom ASICs: 1) circuit designs are fixed to some extent (not changeable) and 2) long design cycle/fabrication time (order of months). Reconfigurable analog circuits called Field Programmable Analog Arrays (FPAAs) have been used to implement a variety of AVLSI circuits in a short time (order of minutes). This paper presents initial hardware results using reconfigurable AVLSI circuits developed at Georgia Tech to implement a robot path planning algorithm. A simple toy problem is presented as a proof of concept.

[1]  Ismail Faik Baskaya,et al.  Physical design automation for large scale field programmable analog arrays , 2009 .

[2]  Arindam Basu,et al.  Hardware and software infrastructure for a family of floating-gate based FPAAs , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[3]  Timothy W. McLain,et al.  Autonomous Vehicle Technologies for Small Fixed Wing UAVs , 2003 .

[4]  D. Pines,et al.  Challenges Facing Future Micro-Air-Vehicle Development , 2006 .

[5]  David V. Anderson,et al.  Large-scale field-programmable analog arrays for analog signal processing , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  M. Humi,et al.  Boundary value problems and partial differential equations , 1991 .

[7]  Guido Bugmann,et al.  Rapid path planning for robotic manipulators using an emulated resistive grid , 1995 .

[8]  Arindam Basu,et al.  A Fully Integrated Architecture for Fast Programming of Floating Gates , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[9]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[10]  Lionel Tarassenko,et al.  Robot path planning using VLSI resistive grids , 1993 .

[11]  Thomas J. Mueller,et al.  MICRO AERIAL VEHICLE DEVELOPMENT : DESIGN , COMPONENTS , FABRICATION , AND FLIGHT-TESTING , 2022 .

[12]  Arindam Basu,et al.  A large-scale Reconfigurable Smart Sensory Chip , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[13]  Robert J. Wood,et al.  An Autonomous Palm-Sized Gliding Micro Air Vehicle , 2007, IEEE Robotics & Automation Magazine.

[14]  Mircea R. Stan,et al.  Analog VLSI for robot path planning , 1994, J. VLSI Signal Process..

[15]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[16]  David V. Anderson,et al.  A generic reconfigurable array specification and programming environment (GRASPER) , 2009, 2009 European Conference on Circuit Theory and Design.

[17]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[18]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[19]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[20]  Csaba Petre,et al.  Automated conversion of Simulink designs to analog hardware on an FPAA , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[21]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[22]  Christopher M. Twigg,et al.  Programmable Floating Gate FPAA Switches Are Not Dead Weight , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[23]  David L Powers,et al.  Boundary Value Problems and Partial Differential Equations Ed. 6 , 2009 .

[24]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[25]  Christopher M. Twigg,et al.  A Floating-Gate-Based Field-Programmable Analog Array , 2010, IEEE Journal of Solid-State Circuits.