Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors

Abstract The thermal conductivity of supercapacitor film electrodes composed of activated carbon (AC), AC with 15 mass% multi-walled carbon nanotubes (MWCNTs), AC with 15 mass% onion-like carbon (OLC), and only OLC, all mixed with polymer binder (polytetrafluoroethylene), has been measured. This was done for dry electrodes and after the electrodes have been saturated with an organic electrolyte (1 M tetraethylammonium–tetrafluoroborate in acetonitrile, TEA–BF 4 ). The thermal conductivity data was implemented in a simple model of generation and transport of heat in a cylindrical cell supercapacitor systems. Dry electrodes showed a thermal conductivity in the range of 0.09–0.19 W K −1  m −1 and the electrodes soaked with an organic electrolyte yielded values for the thermal conductivity between 0.42 and 0.47 W K −1  m −1 . It was seen that the values related strongly to the porosity of the carbon electrode materials. Modeling of the internal temperature profiles of a supercapacitor under conditions corresponding to extreme cycling demonstrated that only a moderate temperature gradient of several degrees Celsius can be expected and which depends on the ohmic resistance of the cell as well as the wetting of the electrode materials.

[1]  Yun Wang,et al.  Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers , 2013 .

[2]  François Béguin,et al.  Carbons for Electrochemical Energy Storage and Conversion Systems , 2009 .

[3]  John R Miller,et al.  Valuing Reversible Energy Storage , 2012, Science.

[4]  H. Gualous,et al.  Supercapacitor Characterization and Thermal Modelling With Reversible and Irreversible Heat Effect , 2011, IEEE Transactions on Power Electronics.

[5]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[6]  Antti Virtanen,et al.  Calorimetric efficiency measurements of supercapacitors and lithium-ion batteries , 2011, 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC).

[7]  S. Kjelstrup,et al.  Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers , 2010 .

[8]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[9]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[10]  M. Mench,et al.  Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials , 2006 .

[11]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[12]  Marshall Miller,et al.  Testing of electrochemical capacitors: Capacitance, resistance, energy density, and power capability , 2010 .

[13]  V. Presser,et al.  High power supercapacitor electrodes based on flexible TiC-CDC nano-felts , 2012 .

[14]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[15]  David S. Smith,et al.  Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent , 2009 .

[16]  S. Kjelstrup,et al.  Ageing and thermal conductivity of Porous Transport Layers used for PEM Fuel Cells , 2013 .

[17]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[18]  S. Kjelstrup,et al.  Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell , 2010 .

[19]  Hugh Alan Bruck,et al.  Modeling and Validation of a Prototype Thermally-Enhanced Polymer Heat Exchanger , 2011 .

[20]  Dominique Massiot,et al.  Causes of supercapacitors ageing in organic electrolyte , 2007 .

[21]  P. Butler,et al.  Lithium battery thermal models , 2002 .

[22]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[23]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[24]  Alexander Wokaun,et al.  Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages , 2010 .

[25]  J. Pharoah,et al.  Thermal conductivity and temperature profiles of the micro porous layers used for the polymer electrolyte membrane fuel cell , 2013 .

[26]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[27]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[28]  P. Klemens,et al.  Thermal conductivity of graphite in the basal plane , 1994 .

[29]  W. Pabst,et al.  Mooney-type relation for the porosity dependence of the effective tensile modulus of ceramics , 2004 .

[30]  N. Djilali,et al.  Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load , 2011 .

[31]  Giovanni Restuccia,et al.  Composites of activated carbon for refrigeration adsorption machines , 1995 .

[32]  H. Gualous,et al.  Supercapacitor Module Sizing and Heat Management under Electric, Thermal, and Aging Constraints , 2013 .

[33]  Guoqiang Cai,et al.  Thermal conductivity of alcohols with acetonitrile and N,N-dimethylformamide , 1993 .

[34]  Hidetaka Konno,et al.  Carbon materials for electrochemical capacitors , 2010 .