Defining genome maintenance pathways using functional genomic approaches

Genome maintenance activities including DNA repair, cell division cycle control, and checkpoint signaling pathways preserve genome integrity and prevent disease. Defects in these pathways cause birth defects, neurodegeneration, premature aging, and cancer. Recent technical advances in functional genomic approaches such as expression profiling, proteomics, and RNA interference (RNAi) technologies have rapidly expanded our knowledge of the proteins that work in these pathways. In this review, we examine the use of these high-throughput methodologies in higher eukaryotic organisms for the interrogation of genome maintenance activities.

[1]  J. Bader,et al.  A DNA Integrity Network in the Yeast Saccharomyces cerevisiae , 2013, Cell.

[2]  L. Rasmussen,et al.  Functional Genomics , 2012, Methods in Molecular Biology.

[3]  J. Sarkaria,et al.  WWP2 is an E3 ubiquitin ligase for PTEN , 2011, Nature Cell Biology.

[4]  B. Price,et al.  Chromatin dynamics and the repair of DNA double strand breaks , 2011, Cell cycle.

[5]  J Wade Harper,et al.  A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. , 2010, Molecular cell.

[6]  Grant W. Brown,et al.  The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. , 2010, Molecular cell.

[7]  R. Bristow,et al.  Poly(ADP-ribose) polymerase inhibition as a model for synthetic lethality in developing radiation oncology targets. , 2010, Seminars in radiation oncology.

[8]  P. Ménard,et al.  The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage , 2010, The Journal of cell biology.

[9]  S. Elledge,et al.  A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. , 2010, Genes & development.

[10]  C. Prives,et al.  Transcriptional regulation by p53. , 2010, Cold Spring Harbor perspectives in biology.

[11]  J Wade Harper,et al.  A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. , 2010, Molecular cell.

[12]  A. D’Andrea,et al.  Susceptibility pathways in Fanconi's anemia and breast cancer. , 2010, The New England journal of medicine.

[13]  M. O’Connor,et al.  Sensitivity to Poly(ADP-ribose) Polymerase (PARP) Inhibition Identifies Ubiquitin-specific Peptidase 11 (USP11) as a Regulator of DNA Double-strand Break Repair* , 2010, The Journal of Biological Chemistry.

[14]  T. Schug,et al.  DYRK1A and DYRK3 Promote Cell Survival through Phosphorylation and Activation of SIRT1* , 2010, The Journal of Biological Chemistry.

[15]  C. Myers,et al.  Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. , 2010, Methods in enzymology.

[16]  L. Nezi,et al.  Sister chromatid tension and the spindle assembly checkpoint. , 2009, Current opinion in cell biology.

[17]  Danny Reinberg,et al.  Histones: annotating chromatin. , 2009, Annual review of genetics.

[18]  Y. Shyr,et al.  Functional genomic screens identify CINP as a genome maintenance protein , 2009, Proceedings of the National Academy of Sciences.

[19]  E. Lam,et al.  Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity , 2009, Nature Reviews Genetics.

[20]  Alberto Inga,et al.  The expanding universe of p53 targets , 2009, Nature Reviews Cancer.

[21]  A. Levine,et al.  The first 30 years of p53: growing ever more complex , 2009, Nature Reviews Cancer.

[22]  Grant W. Brown,et al.  Dissecting the DNA damage response using functional genomics approaches in S. cerevisiae. , 2009, DNA repair.

[23]  N. Lowndes,et al.  53BP1: function and mechanisms of focal recruitment. , 2009, Biochemical Society transactions.

[24]  R. Wollman,et al.  A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. , 2009, Molecular cell.

[25]  John R Yates,et al.  Proteomics by mass spectrometry: approaches, advances, and applications. , 2009, Annual review of biomedical engineering.

[26]  Kay Hofmann,et al.  NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. , 2009, Genes & development.

[27]  Marc W Kirschner,et al.  Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays , 2009, Proceedings of the National Academy of Sciences.

[28]  Edward S. Miller,et al.  The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage , 2009, Cell.

[29]  J. Ellenberg,et al.  RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins , 2009, Cell.

[30]  Robert E. Kingston,et al.  Purification of Proteins Associated with Specific Genomic Loci , 2009, Cell.

[31]  A. Ashworth,et al.  A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. , 2008, DNA repair.

[32]  Yves Pommier,et al.  γH2AX and cancer , 2008, Nature Reviews Cancer.

[33]  M. Nussenzweig,et al.  53BP1 facilitates long-range DNA end-joining during V(D)J recombination , 2008, Nature.

[34]  M. Mann,et al.  Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. , 2008, Molecular cell.

[35]  J. Jiricny,et al.  Interplay of DNA Repair Pathways Controls Methylation Damage Toxicity in Saccharomyces cerevisiae , 2008, Genetics.

[36]  Elizabeth Iorns,et al.  A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor , 2008, The EMBO journal.

[37]  F. Alt,et al.  Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. , 2007, Molecular cell.

[38]  J Wade Harper,et al.  The DNA damage response: ten years after. , 2007, Molecular cell.

[39]  S. Gygi,et al.  Profiling of UV-induced ATM/ATR signaling pathways , 2007, Proceedings of the National Academy of Sciences.

[40]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[41]  A. Hyman,et al.  Genome-scale RNAi profiling of cell division in human tissue culture cells , 2007, Nature Cell Biology.

[42]  Marcus B Smolka,et al.  Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases , 2007, Proceedings of the National Academy of Sciences.

[43]  J. Qin,et al.  A Proteomic Analysis of Ataxia Telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) Substrates Identifies the Ubiquitin-Proteasome System as a Regulator for DNA Damage Checkpoints* , 2007, Journal of Biological Chemistry.

[44]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[45]  Michael Peyton,et al.  Synthetic lethal screen identification of chemosensitizer loci in cancer cells , 2007, Nature.

[46]  Peter K. Sorger,et al.  A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling , 2007, Nature Cell Biology.

[47]  R. Tibbetts,et al.  Identification of Carboxyl-terminal MCM3 Phosphorylation Sites Using Polyreactive Phosphospecific Antibodies* , 2007, Journal of Biological Chemistry.

[48]  H. Erfle,et al.  Reverse transfection on cell arrays for high content screening microscopy , 2007, Nature Protocols.

[49]  Yan Wang,et al.  Genome-wide functional analysis of human cell-cycle regulators , 2006, Proceedings of the National Academy of Sciences.

[50]  Robert J. D. Reid,et al.  Functional genomics of the yeast DNA-damage response , 2006, Genome Biology.

[51]  J. Peters The anaphase promoting complex/cyclosome: a machine designed to destroy , 2006, Nature Reviews Molecular Cell Biology.

[52]  R. Plasterk,et al.  Identification of Conserved Pathways of DNA-Damage Response and Radiation Protection by Genome-Wide RNAi , 2006, Current Biology.

[53]  Y. Taniguchi,et al.  Genetic dissection of vertebrate 53BP1: a major role in non-homologous end joining of DNA double strand breaks. , 2006, DNA repair.

[54]  C Linhart,et al.  Parallel induction of ATM-dependent pro- and antiapoptotic signals in response to ionizing radiation in murine lymphoid tissue , 2006, Oncogene.

[55]  Jussi Taipale,et al.  Identification of pathways regulating cell size and cell-cycle progression by RNAi , 2006, Nature.

[56]  Edward Kim,et al.  Optimizing chemotherapy and targeted agent combinations in NSCLC. , 2005, Lung cancer.

[57]  Mark Gerstein,et al.  Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. , 2005, Genes & development.

[58]  M. Vidal,et al.  Interactome: gateway into systems biology. , 2005, Human molecular genetics.

[59]  K. Shiozaki,et al.  Yeast signaling pathways in the oxidative stress response. , 2005, Mutation research.

[60]  H. Himmelbauer,et al.  An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division , 2004, Nature.

[61]  S. Elledge,et al.  Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Nussenzweig,et al.  53BP1 is required for class switch recombination , 2004, The Journal of cell biology.

[63]  F. Alt,et al.  53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination , 2004, Nature Immunology.

[64]  M. Jordan,et al.  Microtubules as a target for anticancer drugs , 2004, Nature Reviews Cancer.

[65]  P. Thuriaux,et al.  Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe , 1976, Molecular and General Genetics MGG.

[66]  François-Michel Boisvert,et al.  A Proteomic Analysis of Arginine-methylated Protein Complexes* , 2003, Molecular & Cellular Proteomics.

[67]  P. Jeggo,et al.  Potential Role for 53BP1 in DNA End-joining Repair through Direct Interaction with DNA* , 2003, Journal of Biological Chemistry.

[68]  M. Bittner,et al.  Functional genomics as a window on radiation stress signaling , 2003, Oncogene.

[69]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[70]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[71]  Andrew G Fraser,et al.  Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. , 2003, Genes & development.

[72]  E. Friedberg,et al.  DNA damage and repair , 2003, Nature.

[73]  D. Wojchowski,et al.  DYRK3 Activation, Engagement of Protein Kinase A/cAMP Response Element-binding Protein, and Modulation of Progenitor Cell Survival* , 2002, The Journal of Biological Chemistry.

[74]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[75]  Ronald W. Davis,et al.  Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Muschel,et al.  Gene expression profiling of HeLa cells in G1 or G2 phases , 2002, Oncogene.

[77]  M. Vidal,et al.  Combined Functional Genomic Maps of the C. elegans DNA Damage Response , 2002, Science.

[78]  Anindya Dutta,et al.  DNA replication in eukaryotic cells. , 2002, Annual review of biochemistry.

[79]  Junjie Chen,et al.  Histone H2AX Is Phosphorylated in an ATR-dependent Manner in Response to Replicational Stress* , 2001, The Journal of Biological Chemistry.

[80]  M. Resnick,et al.  Genes required for ionizing radiation resistance in yeast , 2001, Nature Genetics.

[81]  Michael M. Murphy,et al.  ATM Phosphorylates Histone H2AX in Response to DNA Double-strand Breaks* , 2001, The Journal of Biological Chemistry.

[82]  Ronald W. Davis,et al.  A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Junjie Chen,et al.  Tumor Suppressor P53 Binding Protein 1 (53bp1) Is Involved in DNA Damage–Signaling Pathways , 2001, The Journal of cell biology.

[84]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .

[85]  T. Halazonetis,et al.  P53 Binding Protein 1 (53bp1) Is an Early Participant in the Cellular Response to DNA Double-Strand Breaks , 2000, The Journal of cell biology.

[86]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[87]  S. T. Kim,et al.  Substrate Specificities and Identification of Putative Substrates of ATM Kinase Family Members* , 1999, The Journal of Biological Chemistry.

[88]  R. Eisenman,et al.  Sin Meets NuRD and Other Tails of Repression , 1999, Cell.

[89]  E. Rogakou,et al.  Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo , 1999, The Journal of cell biology.

[90]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[91]  Yusuke Nakamura,et al.  Positional cloning of the gene for Nijmegen breakage syndrome , 1998, Nature Genetics.

[92]  John R Yates,et al.  The hMre11/hRad50 Protein Complex and Nijmegen Breakage Syndrome: Linkage of Double-Strand Break Repair to the Cellular DNA Damage Response , 1998, Cell.

[93]  E. Rogakou,et al.  DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139* , 1998, The Journal of Biological Chemistry.

[94]  P. Legrain,et al.  Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens , 1997, Nature Genetics.

[95]  Marc W. Kirschner,et al.  How Proteolysis Drives the Cell Cycle , 1996, Science.

[96]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[97]  M. Lovett,et al.  A single ataxia telangiectasia gene with a product similar to PI-3 kinase. , 1995, Science.

[98]  M. Kirschner,et al.  A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B , 1995, Cell.

[99]  A. Hershko,et al.  The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. , 1995, Molecular biology of the cell.

[100]  M. Skolnick,et al.  BRCA1 mutations in primary breast and ovarian carcinomas. , 1994, Science.

[101]  Steven E. Bayer,et al.  A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. , 1994, Science.

[102]  Andrew W. Murray,et al.  Feedback control of mitosis in budding yeast , 1991, Cell.

[103]  B. Roberts,et al.  S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function , 1991, Cell.

[104]  R. Painter,et al.  Radiosensitivity in ataxia-telangiectasia: a new explanation. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Lavin,et al.  Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. , 1980, Nucleic acids research.

[106]  Paul Nurse,et al.  Genetic control of cell size at cell division in yeast , 1975, Nature.

[107]  L. Hartwell,et al.  Genetic control of the cell division cycle in yeast. , 1974, Science.

[108]  L. Hartwell,et al.  Genetic control of the cell-division cycle in yeast. I. Detection of mutants. , 1970, Proceedings of the National Academy of Sciences of the United States of America.