Asynchronous neurocomputing for optimal control and reinforcement learning with large state spaces
暂无分享,去创建一个
[1] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[2] Hervé Frezza-Buet. Un modèle de cortex pour le comportement motivé d'un agent neuromimétique autonome , 1999 .
[3] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[4] Yves Burnod,et al. An adaptive neural network - the cerebral cortex , 1991 .
[5] Martin L. Puterman,et al. Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .
[6] Nicolas P. Rougier,et al. Modèles de mémoires pour la navigation autonome , 2000 .
[7] Bruno Scherrer. Parallel asynchronous distributed computations of optimal control in large state space Markov Decision processes , 2003, ESANN.
[8] W. Pitts,et al. A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.
[9] Andrew W. Moore,et al. Rates of Convergence for Variable Resolution Schemes in Optimal Control , 2000, ICML.
[10] J. Knott. The organization of behavior: A neuropsychological theory , 1951 .
[11] Richard S. Sutton,et al. Dimensions of Reinforcement Learning , 1998 .
[12] Jon Louis Bentley,et al. An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.
[13] Andrew G. Barto,et al. Reinforcement learning , 1998 .
[14] Andrew W. Moore,et al. Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..
[15] Bruno Scherrer. Apprentissage de représentation et auto-organisation modulaire pour un agent autonome , 2003 .
[16] Andrew G. Barto,et al. Convergence of Indirect Adaptive Asynchronous Value Iteration Algorithms , 1993, NIPS.
[17] Leslie Pack Kaelbling,et al. On the Complexity of Solving Markov Decision Problems , 1995, UAI.
[18] Alexis Scheuer. Planification de chemins à courbure continue pour robot mobile non-holonome , 1998 .
[19] François Fleuret,et al. DEA: An Architecture for Goal Planning and Classification , 2000, Neural Computation.