Cell-type specific innervation of cortical pyramidal cells at their apical tufts

We investigated the synaptic innervation of apical tufts of cortical pyramidal cells in a region between layers 1 and 2 using 3-D electron microscopy (3D-EM) applied to four cortical regions in mouse. Across all cortices, we found the relative inhibitory input at the apical dendrite’s main bifurcation to be more than 3-fold stronger for layer 2 pyramidal cells than for all other pyramidal cells. Towards the distal tuft dendrites in upper layer 1, however, the relative inhibitory input was about 2-fold stronger for L5 pyramidal cells than for all others. Only L3 pyramidal cells showed homogeneous inhibitory input density. The inhibitory to excitatory synaptic balance is thus specific for the types of pyramidal cells. Inhibitory axons preferentially innervated either layer 2 or L3/5 apical dendrites, but not both. These findings describe connectomic principles for the control of pyramidal cells at their apical dendrites in the upper layers of the cerebral cortex and point to differential computational properties of layer 2, layer 3 and layer 5 pyramidal cells in cortex.

[1]  M. Helmstaedter,et al.  Dense connectomic reconstruction in layer 4 of the somatosensory cortex , 2018, Science.

[2]  Johannes J. Letzkus,et al.  Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons , 2018, Neuron.

[3]  Hanchuan Peng,et al.  Whole-neuron synaptic mapping reveals local balance between excitatory and inhibitory synapse organization , 2018, bioRxiv.

[4]  Moritz Helmstaedter,et al.  FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics , 2018, eLife.

[5]  M. Helmstaedter,et al.  Axonal synapse sorting in medial entorhinal cortex , 2017, Nature.

[6]  Philipp Otto,et al.  webKnossos: efficient online 3D data annotation for connectomics , 2017, Nature Methods.

[7]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[8]  F. Karube,et al.  The Diversity of Cortical Inhibitory Synapses , 2016, Front. Neural Circuits.

[9]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[10]  Moritz Helmstaedter,et al.  SegEM: Efficient Image Analysis for High-Resolution Connectomics , 2015, Neuron.

[11]  M. Helmstaedter,et al.  Large-volume en-bloc staining for electron microscopy-based connectomics , 2015, Nature Communications.

[12]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[13]  Louis K. Scheffer,et al.  Automated Alignment of Imperfect EM Images for Neural Reconstruction , 2013 .

[14]  Matthew E Larkum,et al.  Inhibition of dendritic Ca2+ spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct Gi/o‐βγ‐subunit interaction with Cav1 channels , 2013, The Journal of physiology.

[15]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[16]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[17]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[18]  Elly Nedivi,et al.  Clustered Dynamics of Inhibitory Synapses and Dendritic Spines in the Adult Neocortex , 2012, Neuron.

[19]  M. Larkum,et al.  The Time Window for Generation of Dendritic Spikes by Coincidence of Action Potentials and EPSPs is Layer Specific in Somatosensory Cortex , 2012, PloS one.

[20]  Toshio Yanagida,et al.  From Single Molecule Fluctuations to Muscle Contraction: A Brownian Model of A.F. Huxley's Hypotheses , 2012, PloS one.

[21]  T. Minka Estimating a Dirichlet distribution , 2012 .

[22]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[23]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[24]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[25]  N. Spruston,et al.  Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons , 2009, Neuron.

[26]  Satoru Kondo,et al.  Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents , 2007, The Journal of Neuroscience.

[27]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[28]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[29]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[30]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[31]  Bert Sakmann,et al.  Supralinear Ca2+ Influx into Dendritic Tufts of Layer 2/3 Neocortical Pyramidal Neurons In Vitro and In Vivo , 2003, The Journal of Neuroscience.

[32]  M. Larkum,et al.  Signaling of Layer 1 and Whisker-Evoked Ca2+ and Na+ Action Potentials in Distal and Terminal Dendrites of Rat Neocortical Pyramidal Neurons In Vitro and In Vivo , 2002, The Journal of Neuroscience.

[33]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[34]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[35]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[36]  Muneyuki Ito,et al.  Premature bifurcation of the apical dendritic trunk of vibrissa‐responding pyramidal neurones of X‐irradiated rat neocortex , 1998, The Journal of physiology.

[37]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[38]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[39]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions , 1995, The Journal of comparative neurology.

[40]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[41]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[43]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[44]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  B. Kolb,et al.  Behavioural and anatomical studies of the posterior parietal cortex in the rat , 1987, Behavioural Brain Research.

[47]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[48]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .