Positive and smooth Gordon-Wixom coordinates

Abstract Generalized barycentric coordinates (GBC) are widely used in computer graphics and related areas and there are a few kinds of GBC in the literature. In this paper we propose positive and smooth Gordon-Wixom coordinates (PSGWC) for the interior points of planar polygons, which are smooth and inherit all nice properties of positive Gordon-Wixom coordinates (PGWC) that are only C 0 for planar polygons. The basic idea of PSGWC is that we replace the polygon with an active curve for each inner point in the process of computing coordinates, and thus PSGWC can achieve the required continuity by adjusting the continuity order of the active curve. We also introduce a method for improving the quality of PSGWC by updating the polygon based on angle bisectors iteratively. Several numerical examples are included to show the effect of PSGWC.

[1]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[2]  Daniele Panozzo,et al.  Blended barycentric coordinates , 2017, Comput. Aided Geom. Des..

[3]  Josiah Manson,et al.  Moving Least Squares Coordinates , 2010, Comput. Graph. Forum.

[4]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[5]  Josiah Manson,et al.  Positive Gordon-Wixom coordinates , 2011, Comput. Aided Des..

[6]  Kai Hormann,et al.  Subdividing barycentric coordinates , 2016, Comput. Aided Geom. Des..

[7]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[8]  Andrew Nealen,et al.  Volumetric modeling with diffusion surfaces , 2010, SIGGRAPH 2010.

[9]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[10]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[11]  Mathieu Desbrun,et al.  Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..

[12]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[13]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[14]  Shi-Min Hu,et al.  Cubic mean value coordinates , 2013, ACM Trans. Graph..

[15]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[16]  Wenping Wang,et al.  Functional data approximation on bounded domains using polygonal finite elements , 2018, Comput. Aided Geom. Des..

[17]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[18]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[19]  Craig Gotsman,et al.  Spatial deformation transfer , 2009, SCA '09.

[20]  Bailin Deng,et al.  Local barycentric coordinates , 2014, ACM Trans. Graph..

[21]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[22]  GUSTAVO PATOW,et al.  *Cages:: A multilevel, multi-cage-based system for mesh deformation , 2013, TOGS.

[23]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[24]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.

[25]  Tao Ju,et al.  A general geometric construction of coordinates in a convex simplicial polytope , 2007, Comput. Aided Geom. Des..

[26]  D. Levin,et al.  Green Coordinates , 2008, SIGGRAPH 2008.

[27]  Kai Hormann,et al.  A quadrilateral rendering primitive , 2004, Graphics Hardware.

[28]  William J. Gordon,et al.  PSEUDO-HARMONIC INTERPOLATION ON CONVEX DOMAINS* , 1974 .

[29]  Alexander G. Belyaev,et al.  On transfinite barycentric coordinates , 2006, SGP '06.

[30]  Shi-Min Hu,et al.  Poisson Coordinates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  Dani Lischinski,et al.  Coordinates for instant image cloning , 2009, SIGGRAPH 2009.