European aerosol research lidar network-advanced sustainable observation system (EARLINET-ASOS)

The present knowledge of the aerosol distribution is far from sufficient to properly estimate the role of aerosols in changes of the global and regional environmental conditions and climate. The information on the vertical distribution is particularly lacking and lidar remote sensing is the most appropriate tool to close this observational gap. EARLINET-ASOS, starting on the European Aerosol Research Lidar Network (EARLINET) infrastructure, consisting of 24 lidar stations distributed over Europe, will contribute to the improvement of continuing observations and methodological developments that are urgently needed to provide the multi-year continental scale data set necessary to assess the impact of aerosols on the European and global environment and to support future satellite missions.

[1]  J. Cooney,et al.  Remote Measurements of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter , 1970 .

[2]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[3]  S H Melfi,et al.  Remote measurements of the atmosphere using Raman scattering. , 1972, Applied optics.

[4]  David D. Turner,et al.  Automated Retrievals of Water Vapor and Aerosol Profiles from an Operational Raman Lidar , 2002 .

[5]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[6]  L. Mona,et al.  Raman lidar observations of aerosol emitted during the 2002 Etna eruption , 2004 .

[7]  C. Böckmann,et al.  Microphysical aerosol parameters from multiwavelength lidar. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Steven A. Ackerman,et al.  Radiative Effects of Airborne Dust on Regional Energy Budgets at the Top of the Atmosphere , 1992 .

[9]  A Single-ended Atmospheric Transmissometer , 1974 .

[10]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[11]  Gelsomina Pappalardo,et al.  EARLINET: the European aerosol research lidar network , 2008 .

[12]  Albert Ansmann,et al.  Indo‐Asian pollution during INDOEX: Microphysical particle properties and single‐scattering albedo inferred from multiwavelength lidar observations , 2003 .

[13]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[14]  M. Perrone,et al.  Raman lidar monitoring of extinction and backscattering of African dust layers and dust characterization. , 2003, Applied optics.

[15]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[16]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[17]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[18]  Jens Bösenberg,et al.  Aerosol climatology for the planetary boundary layer derived from regular lidar measurements , 2002 .

[19]  S. H. Melfi,et al.  OBSERVATION OF RAMAN SCATTERING BY WATER VAPOR IN THE ATMOSPHERE , 1969 .

[20]  Albert Ansmann,et al.  One‐year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar , 2001 .

[21]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[22]  Albert Ansmann,et al.  European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry , 2002 .

[23]  L. Mona,et al.  One year of tropospheri clidar measurements of aerosol extinction and backscatter , 2003 .

[24]  J. Cooney,et al.  Measurements Separating the Gaseous and Aerosol Components of Laser Atmospheric Backscatter , 1969, Nature.

[25]  Christos Zerefos,et al.  Four‐year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET) , 2005 .

[26]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[27]  J. Ackermann The Extinction-to-Backscatter Ratio of Tropospheric Aerosol: A Numerical Study , 1998 .

[28]  Albert Ansmann,et al.  Potential of lidar backscatter data to estimate solar aerosol radiative forcing. , 2006, Applied optics.

[29]  C. Zerefos,et al.  Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece , 2004 .

[30]  B. Evans Sensitivity of the backscatter/extinction ratio to changes in aerosol properties: implications for lidar. , 1988, Applied optics.

[31]  A. Ansmann,et al.  Measurement of atmospheric aerosol extinction profiles with a Raman lidar. , 1990, Optics letters.

[32]  Philip B. Russell,et al.  Lidar measurement of particles and gases by elastic backscattering and differential absorption , 1976 .

[33]  Adolfo Comeron,et al.  A European aerosol research lidar network to establish an aerosol climatology (EARLINET) , 2000 .

[34]  Albert Ansmann,et al.  Multiyear aerosol observations with dual‐wavelength Raman lidar in the framework of EARLINET , 2004 .

[35]  Albert Ansmann,et al.  Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus , 2004 .