Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers

[1]  Knut Engedal,et al.  Frontotemporal Dementia , 2016, Journal of geriatric psychiatry and neurology.

[2]  L. Garriga-Grimau,et al.  [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.

[3]  F. Gage,et al.  Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS , 2015, Nature Neuroscience.

[4]  Christian A. Ross,et al.  Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.

[5]  E. Kremmer,et al.  Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing , 2015, Acta Neuropathologica.

[6]  Dejun Yang,et al.  FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions , 2015, Acta Neuropathologica.

[7]  T. Griffiths,et al.  Accumulation of dipeptide repeat proteins predates that of TDP‐43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene , 2015, Neuropathology and applied neurobiology.

[8]  D. Ito,et al.  Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. , 2015, Human molecular genetics.

[9]  M. Rossor,et al.  C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis , 2015, The Lancet Neurology.

[10]  Zhouteng Tao,et al.  Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. , 2015, Human molecular genetics.

[11]  N. Shneider,et al.  Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.

[12]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[13]  S. McKnight,et al.  Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.

[14]  Peter K. Todd,et al.  Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS , 2014, Neuron.

[15]  Kevin F. Bieniek,et al.  Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.

[16]  M. Mann,et al.  C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration , 2014, Acta Neuropathologica.

[17]  D. Mann,et al.  Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2014, Acta neuropathologica communications.

[18]  Masao Ito,et al.  Consensus Paper: The Cerebellum's Role in Movement and Cognition , 2014, The Cerebellum.

[19]  I. Mackenzie,et al.  Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability , 2014, Acta Neuropathologica.

[20]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[21]  R. Buckner The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging , 2013, Neuron.

[22]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[23]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[24]  L. Petrucelli,et al.  Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2013, Acta neuropathologica communications.

[25]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[26]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[27]  B. Miller,et al.  Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons , 2013, Acta Neuropathologica.

[28]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[29]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[30]  Kevin F. Bieniek,et al.  Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion , 2013, Acta Neuropathologica.

[31]  D. Geschwind,et al.  Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.

[32]  John L. Robinson,et al.  Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion , 2012, Acta Neuropathologica.

[33]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[34]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[35]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[36]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[37]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[38]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[39]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[40]  P. Hartikainen,et al.  Ubiquitinated p62‐positive, TDP‐43‐negative inclusions in cerebellum in frontotemporal lobar degeneration with TAR DNA binding protein 43 , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[41]  M. York,et al.  Detecting frontotemporal dysfunction in ALS: Utility of the ALS Cognitive Behavioral Screen (ALS-CBS™) , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[42]  B. Miller,et al.  Are amyotrophic lateral sclerosis patients cognitively normal? , 2003, Neurology.

[43]  M. Posner,et al.  Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.