Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers
暂无分享,去创建一个
Kevin F. Bieniek | L. Petrucelli | R. Petersen | B. Boeve | O. Pedraza | D. Knopman | M. Murray | D. Dickson | J. Parisi | J. Lucas | N. Graff-Radford | D. Edbauer | J. Crook | K. Josephs | Jie Jiang | D. Cleveland | C. Lagier-Tourenne | K. Boylan | T. Gendron | M. Castanedes-Casey | Linda Rousseau | Lillian M. Daughrity | P. Desaro | Karen Overstreet | Colleen S. Thomas | M. van Blitterswijk | R. Rademakers | B. Rush | A. Robertson | Kevin F Bieniek | D. Knopman | Otto Pedraza
[1] Knut Engedal,et al. Frontotemporal Dementia , 2016, Journal of geriatric psychiatry and neurology.
[2] L. Garriga-Grimau,et al. [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.
[3] F. Gage,et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS , 2015, Nature Neuroscience.
[4] Christian A. Ross,et al. Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS , 2015, Nature Neuroscience.
[5] E. Kremmer,et al. Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing , 2015, Acta Neuropathologica.
[6] Dejun Yang,et al. FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions , 2015, Acta Neuropathologica.
[7] T. Griffiths,et al. Accumulation of dipeptide repeat proteins predates that of TDP‐43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene , 2015, Neuropathology and applied neurobiology.
[8] D. Ito,et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. , 2015, Human molecular genetics.
[9] M. Rossor,et al. C9orf72 expansions in frontotemporal dementia and amyotrophic lateral sclerosis , 2015, The Lancet Neurology.
[10] Zhouteng Tao,et al. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. , 2015, Human molecular genetics.
[11] N. Shneider,et al. Antisense Proline-Arginine RAN Dipeptides Linked to C9ORF72-ALS/FTD Form Toxic Nuclear Aggregates that Initiate In Vitro and In Vivo Neuronal Death , 2014, Neuron.
[12] O. Hendrich,et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.
[13] S. McKnight,et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells , 2014, Science.
[14] Peter K. Todd,et al. Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS , 2014, Neuron.
[15] Kevin F. Bieniek,et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress , 2014, Acta Neuropathologica.
[16] M. Mann,et al. C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration , 2014, Acta Neuropathologica.
[17] D. Mann,et al. Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2014, Acta neuropathologica communications.
[18] Masao Ito,et al. Consensus Paper: The Cerebellum's Role in Movement and Cognition , 2014, The Cerebellum.
[19] I. Mackenzie,et al. Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability , 2014, Acta Neuropathologica.
[20] J. Rothstein,et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.
[21] R. Buckner. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging , 2013, Neuron.
[22] E. Kremmer,et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.
[23] Kevin F. Bieniek,et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.
[24] L. Petrucelli,et al. Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72 , 2013, Acta neuropathologica communications.
[25] S. Lorenzl,et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.
[26] L. Petrucelli,et al. Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.
[27] B. Miller,et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons , 2013, Acta Neuropathologica.
[28] E. Kremmer,et al. The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.
[29] Kevin F. Bieniek,et al. Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.
[30] Kevin F. Bieniek,et al. Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion , 2013, Acta Neuropathologica.
[31] D. Geschwind,et al. Frontotemporal dementia due to C9ORF72 mutations , 2012, Neurology.
[32] John L. Robinson,et al. Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion , 2012, Acta Neuropathologica.
[33] A. Al-Chalabi,et al. Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.
[34] C. Jack,et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.
[35] Nick C Fox,et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.
[36] T. Hortobágyi,et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.
[37] T. Ferman,et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.
[38] Bruce L. Miller,et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.
[39] David Heckerman,et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.
[40] P. Hartikainen,et al. Ubiquitinated p62‐positive, TDP‐43‐negative inclusions in cerebellum in frontotemporal lobar degeneration with TAR DNA binding protein 43 , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.
[41] M. York,et al. Detecting frontotemporal dysfunction in ALS: Utility of the ALS Cognitive Behavioral Screen (ALS-CBS™) , 2010, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.
[42] B. Miller,et al. Are amyotrophic lateral sclerosis patients cognitively normal? , 2003, Neurology.
[43] M. Posner,et al. Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.