Model predictive control and dynamic real-time optimization of steam cracking units

Abstract Unlike other parts of this book, this chapter does not deal with mathematical procedures for modeling complex reaction systems, for example, strategies for construction/reduction of kinetic schemes, approaches to the estimation of their parameters (preexponential factors, activation energies, etc.), and so on. Conversely, it shows how to use accurate mathematical models of chemical processes, based on detailed kinetic schemes, for advanced control and optimization purposes. To this end, it describes two advanced model-based optimization/control strategies, called model predictive control and dynamic real-time optimization, and demonstrates the extent to which they can benefit chemical processes. The process unit, utilized to show the potential of model predictive control and dynamic real-time optimization, is a steam cracking furnace.

[1]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[2]  Victor M. Zavala,et al.  Fast implementations and rigorous models: Can both be accommodated in NMPC? , 2008 .

[3]  L. Biegler,et al.  A quasi‐sequential approach to large‐scale dynamic optimization problems , 2006 .

[4]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[5]  Dominique Bonvin,et al.  Robust predictive control based on neighboring extremals , 2004 .

[6]  Lorenz T. Biegler,et al.  A software environment for simultaneous dynamic optimization , 2007, Comput. Chem. Eng..

[7]  Lorenz T. Biegler,et al.  Economic Nonlinear Model Predictive Control for periodic optimal operation of gas pipeline networks , 2013, Comput. Chem. Eng..

[8]  Gintaras V. Reklaitis,et al.  A computational framework for integrating campaign scheduling, dynamic optimization and optimal control in multi-unit batch processes , 2017, Comput. Chem. Eng..

[9]  Flavio Manenti,et al.  Differential and Differential-Algebraic Systems for the Chemical Engineer: Solving Numerical Problems , 2015 .

[10]  A. A. Patwardhan,et al.  NONLINEAR MODEL PREDICTIVE CONTROL , 1990 .

[11]  Gintaras V. Reklaitis,et al.  Multi‐scenario Robust Online Optimization and Control of Fed‐batch Systems via Dynamic Model‐based Scenario Selection , 2016 .

[12]  Moritz Diehl,et al.  Handling uncertainty in economic nonlinear model predictive control: A comparative case study , 2014 .

[13]  Flavio Manenti,et al.  Model Predictive Control of a Cvd Reactor for Production of Polysilicon Rods , 2010 .

[14]  Flavio Manenti,et al.  BzzMath: Library Overview and Recent Advances in Numerical Methods , 2012 .

[15]  Francis J. Doyle,et al.  Differential flatness based nonlinear predictive control of fed-batch bioreactors , 2001 .

[16]  Wolfgang Marquardt,et al.  Dynamic predictive scheduling of operational strategies for continuous processes using mixed-logic dynamic optimization , 2007, Comput. Chem. Eng..

[17]  Zhijiang Shao,et al.  A novel strategy for dynamic optimization of grade transition processes based on molecular weight distribution , 2014 .

[18]  Eliseo Ranzi,et al.  new improvements in modeling kinetic schemes for hydrocarbons pyrolysis reactors , 1992 .

[19]  Flavio Manenti,et al.  A Novel All-in-One Real-Time Optimization and Optimal Control Method for Batch Systems: Algorithm Description, Implementation Issues, and Comparison with the Existing Methodologies , 2014 .

[20]  Efstratios N. Pistikopoulos,et al.  New algorithms for mixed-integer dynamic optimization , 2003, Comput. Chem. Eng..

[21]  Filip Logist,et al.  Tuning of NMPC controllers via multi-objective optimisation , 2014, Comput. Chem. Eng..

[22]  O. Bosgra,et al.  Stochastic closed-loop model predictive control of continuous nonlinear chemical processes , 2006 .

[23]  Flavio Manenti,et al.  Considerations on nonlinear model predictive control techniques , 2011, Comput. Chem. Eng..

[24]  Flavio Manenti,et al.  Online model-based optimization and control for the combined optimal operation and runaway prediction and prevention in (fed-)batch systems , 2015 .

[25]  Sauro Pierucci,et al.  An industrial application of an on-line data reconciliation and optimization problem , 1996 .

[26]  Flavio Manenti,et al.  Efficient Numerical Solver for Partially Structured Differential and Algebraic Equation Systems , 2009 .

[27]  Francis J. Doyle,et al.  Nonlinear control of a high-purity distillation column using a traveling-wave model , 1997 .

[28]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[29]  Efstratios N. Pistikopoulos,et al.  MPC on a chip - Recent advances on the application of multi-parametric model-based control , 2008, Comput. Chem. Eng..

[30]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[31]  M. Rovaglio,et al.  Integrated Multilevel Optimization in Large-Scale Poly(Ethylene Terephthalate) Plants , 2008 .

[32]  Filip Logist,et al.  Multi-objective optimal control of chemical processes using ACADO toolkit , 2012, Comput. Chem. Eng..

[33]  Z. Nagy,et al.  Distributional uncertainty analysis using power series and polynomial chaos expansions , 2007 .

[34]  Flavio Manenti,et al.  Nonlinear Model Predictive Control: A Self-Adaptive Approach , 2010 .

[35]  Flavio Manenti,et al.  A robust sustainable optimization & control strategy (RSOCS) for (fed-)batch processes towards the low-cost reduction of utilities consumption , 2016 .