Effect of GLP-1 Treatment on Bone Turnover in Normal, Type 2 Diabetic, and Insulin-Resistant States

[1]  L. Arnes,et al.  Characteristics of GLP-1 and exendins action upon glucose transport and metabolism in type 2 diabetic rat skeletal muscle. , 2008, International journal of molecular medicine.

[2]  W. Malaisse,et al.  Induction and Reversibility of Insulin Resistance in Rats Exposed to Exogenous D-Fructose , 2008, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[3]  D. Drucker,et al.  The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. , 2008, Endocrinology.

[4]  W. Bollag,et al.  Impact of Glucose‐Dependent Insulinotropic Peptide on Age‐Induced Bone Loss , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[5]  Lorenz C Hofbauer,et al.  Osteoporosis in Patients With Diabetes Mellitus , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  W. Bollag,et al.  Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. , 2007, Bone.

[7]  J. Holst,et al.  Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. , 2007, Bone.

[8]  I. Valverde,et al.  Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in type 1 and type 2 rat diabetic models , 2001, Endocrine.

[9]  M. Saito,et al.  Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats , 2006, Osteoporosis International.

[10]  J. Aronson,et al.  Bone formation is impaired in a model of type 1 diabetes. , 2005, Diabetes.

[11]  R. Eastell,et al.  Potential Role of Pancreatic and Enteric Hormones in Regulating Bone Turnover , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  W. Malaisse,et al.  Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. , 2005, Journal of molecular endocrinology.

[13]  P. J. Larsen,et al.  Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter , 2005, Regulatory Peptides.

[14]  B. Portha,et al.  Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes , 1979, Diabetologia.

[15]  S. Epstein,et al.  Osteoporosis and Diabetes Mellitus , 2004, Reviews in Endocrine and Metabolic Disorders.

[16]  E. Romagnoli,et al.  Skeletal involvement in patients with diabetes mellitus , 2004, Diabetes/metabolism research and reviews.

[17]  U. Iwaniec,et al.  Basic fibroblast growth factor has rapid bone anabolic effects in ovariectomized rats , 2004, Osteoporosis International.

[18]  R. Shannon,et al.  Effects of Glucagon-Like Peptide-1 in Patients With Acute Myocardial Infarction and Left Ventricular Dysfunction After Successful Reperfusion , 2004, Circulation.

[19]  N. Torres,et al.  Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. , 2004, The Journal of nutrition.

[20]  I. Valverde,et al.  Cell signalling of glucagon-like peptide-1 action in rat skeletal muscle. , 2004, The Journal of endocrinology.

[21]  I. Valverde,et al.  Potent glycogenic effect of GLP-1(7–36)amide in rat skeletal muscle , 1994, Diabetologia.

[22]  J. Holst,et al.  Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. , 2004, Bone.

[23]  J. Holst,et al.  Role of Gastrointestinal Hormones in Postprandial Reduction of Bone Resorption , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  I. Valverde,et al.  Cell signalling of the GLP-1 action in rat liver , 2003, Molecular and Cellular Endocrinology.

[25]  R. Eastell,et al.  Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. , 2002, The Journal of clinical endocrinology and metabolism.

[26]  R. Eastell,et al.  Effect of feeding on bone turnover markers and its impact on biological variability of measurements. , 2002, Bone.

[27]  C. Christiansen,et al.  Mechanism of circadian variation in bone resorption. , 2002, Bone.

[28]  J. Holst,et al.  Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. , 2001, Diabetes.

[29]  I. Valverde,et al.  Effect of GLP-1 on Lipid Metabolism in Human Adipocytes , 2001, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[30]  W. Creutzfeldt The entero-insular axis in type 2 diabetes--incretins as therapeutic agents. , 2001, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.

[31]  H. Rasmussen,et al.  Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. , 2000, Endocrinology.

[32]  P. Rüegsegger,et al.  The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. , 1999, Bone.

[33]  H. Hagino,et al.  The change of bone mineral density in secondary osteoporosis and vertebral fracture incidence , 1999, Journal of Bone and Mineral Metabolism.

[34]  J. Peters,et al.  Bone mineral density, collagen type 1 α 1 genotypes and bone turnover in premenopausal women with diabetes mellitus , 1998, Diabetologia.

[35]  J. Egan,et al.  GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor. , 1998, American journal of physiology. Cell physiology.

[36]  I. Valverde,et al.  Inositolphosphoglycans possibly mediate the effects of glucagon‐like peptide‐1(7‐36)amide on rat liver and adipose tissue , 1998, Cell biochemistry and function.

[37]  P. Rüegsegger,et al.  A new method for the model‐independent assessment of thickness in three‐dimensional images , 1997 .

[38]  TOR Hildebrand,et al.  Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.

[39]  I. Valverde,et al.  Glucagon-like peptide-1 binding to rat skeletal muscle , 1995, Peptides.

[40]  I. Valverde,et al.  Glucagon-like peptide-1 binding to rat hepatic membranes. , 1995, The Journal of endocrinology.

[41]  A. Hofman,et al.  Bone Density in Non-Insulin-Dependent Diabetes Mellitus: The Rotterdam Study , 1995, Annals of Internal Medicine.

[42]  I. Valverde,et al.  Glucagon‐like peptide 1: A potent glycogenic hormone , 1994, FEBS letters.

[43]  B. Thorens Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M Vogel,et al.  Trabecular bone pattern factor--a new parameter for simple quantification of bone microarchitecture. , 1992, Bone.

[45]  I. Valverde,et al.  Lipolytic action of glucagon-like peptides in isolated rat adipocytes , 1992, Peptides.

[46]  W. Malaisse,et al.  Stimulation by D-glucose of protein biosynthesis in tumoral insulin-producing cells (RINm5F line). , 1988, Endocrinology.

[47]  M. Fujishima,et al.  Blood pressure changes in spontaneously hypertensive and normotensive rats with neonatal streptozotocin induced type 2 diabetes. , 1987, Clinical and experimental hypertension. Part A, Theory and practice.

[48]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[49]  R. Mann,et al.  Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor , 1984 .

[50]  L. Avioli,et al.  Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. , 1976, The New England journal of medicine.