A quantitative version of Siegel's theorem: integral points on elliptic curves and Catalan curves.
暂无分享,去创建一个
[1] Jan-Hendrik Evertse,et al. Uniform bounds for the number of solutions to Yn = f(X) , 1986, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Heights and Elliptic Curves , 1986 .
[3] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[4] H. Lenstra,et al. Abelian varieties having purely additive reduction , 1985 .
[5] J. Silverman. Lower bounds for height functions , 1984 .
[6] J. Silverman. Representations of integers by binary forms and the rank of the Mordell-Weil group , 1983 .
[7] J. Silverman. The Néron fiber of abelian varieties with potential good reduction , 1983 .
[8] Joseph H. Silverman,et al. Lower bound for the canonical height on elliptic curves , 1981 .
[9] S. Lang,et al. Elliptic Curves: Diophantine Analysis , 1978 .
[10] Barry Mazur,et al. Modular curves and the eisenstein ideal , 1977 .
[11] T. Apostol. Introduction to analytic number theory , 1976 .
[12] Maurice Mignotte. Quelques remarques sur l'approximation rationnelle des nombres algébriques. , 1974 .
[13] S. Lang. Algebraic Number Theory , 1971 .
[14] Ju. Manin,et al. THE p-TORSION OF ELLIPTIC CURVES IS UNIFORMLY BOUNDED , 1969 .
[15] David Mumford,et al. A Remark on Mordell's Conjecture , 1965 .
[16] D. Lewis,et al. On the representation of integers by binary forms , 1961 .