Reliable, Responsive Pacemaking and Pattern Generation With Minimal Cell Numbers: the Crustacean Cardiac Ganglion

Investigations of the electrophysiology of crustacean cardiac ganglia over the last half-century are reviewed for their contributions to elucidating the cellular mechanisms and interactions by which a small (as few as nine cells) neuronal network accomplishes extremely reliable, rhythmical, patterned activation of muscular activity—in this case, beating of the neurogenic heart. This ganglion is thus a model for pacemaking and central pattern generation. Favorable anatomy has permitted voltage- and space-clamp analyses of voltage-dependent ionic currents that endow each neuron with the intrinsic ability to respond with rhythmical, patterned impulse activity to nonpatterned stimulation. The crustacean soma and initial axon segment do not support impulse generation but integrate input from stretch-sensitive dendrites and electrotonic and chemically mediated synapses on axonal processes in neuropils. The soma and initial axon produce a depolarization-activated, calcium-mediated, sustained potential, the “driver potential,” so-called because it drives a train of impulses at the “trigger zone” of the axon. Extreme reliability results from redundancy and the electrotonic coupling and synaptic interaction among all the neurons. Complex modulation by central nervous system inputs and by neurohormones to adjust heart pumping to physiological demands has long been demonstrated, but much remains to be learned about the cellular and molecular mechanisms of action. The continuing relevance of the crustacean cardiac ganglion as a relatively simple model for pacemaking and central pattern generation is confirmed by the rapidly widening documentation of intrinsic potentials such as plateau potentials in neurons of all major animal groups. The suite of ionic currents (a slowly inactivating calcium current and various potassium currents, with variations) observed for the crustacean cardiac ganglion have been implicated in or proven to underlie a majority of the intrinsic potentials of neurons involved in pattern generation.

[1]  T. Bullock,et al.  Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. , 1957, Journal of cellular and comparative physiology.

[2]  K. Krajniak The identification and structure-activity relations of a cardioactive FMRFamide-related peptide from the blue crab Callinectes sapidus , 1991, Peptides.

[3]  D. McCormick,et al.  Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro. , 1998, Journal of neurophysiology.

[4]  D. Hartline,et al.  Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. , 1967, The Journal of experimental biology.

[5]  M. Steriade,et al.  Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization , 1982, Brain Research.

[6]  B Bioulac,et al.  Subthalamic Nucleus Neurons Switch from Single-Spike Activity to Burst-Firing Mode , 1999, The Journal of Neuroscience.

[7]  S. Aizu Fine structure of cardiac ganglion trunk in prawn, Penaeus japonicus bates. , 1975, Tissue & cell.

[8]  D. Hartline,et al.  Graded synaptic transmission between identified spiking neurons. , 1983, Journal of neurophysiology.

[9]  A. Watanabe,et al.  The interaction of electrical activity among neurons of lobster cardiac ganglion. , 1958, The Japanese journal of physiology.

[10]  Inhibitory Synapses on Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1968, The Journal of general physiology.

[11]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[12]  K. Kuwasawa,et al.  Ganglionic activation of the myocardium of the lobster,Panulirus japonicus , 1980, Journal of comparative physiology.

[13]  K Tazaki,et al.  Neuronal mechanisms underlying rhythmic bursts in crustacean cardiac ganglia. , 1983, Symposia of the Society for Experimental Biology.

[14]  I. Cooke The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. , 1966, American zoologist.

[15]  Donald M. Maynard,et al.  CHAPTER 5 – CIRCULATION AND HEART FUNCTION , 1960 .

[16]  Jary Y. Delgado,et al.  Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobster Panulirus argus , 2000, Journal of neurocytology.

[17]  E. Mayeri,et al.  Functional Organization of the Cardiac Ganglion of the Lobster, Homarus americanus , 1973, The Journal of general physiology.

[18]  A. Sakurai,et al.  Identification of two cardioacceleratory neurons in the isopod crustacean, Ligia exotica and their effects on cardiac ganglion cells , 1998, Journal of Comparative Physiology A.

[19]  A. Berlind Monoamine pharmacology of the lobster cardiac ganglion. , 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[20]  R. Keller,et al.  Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  I. Cooke Studies on the crustacean cardiac ganglion. , 1988, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[22]  A. Watanabe,et al.  Electrical Properties of the Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1967, The Journal of general physiology.

[23]  K. Tazaki Small synaptic potentials in burst activity of large neurons in the lobster cardiac ganglion. , 1971, The Japanese journal of physiology.

[24]  J. Alexandrowicz Memoirs: The Innervation of the Heart of Crustacea: II. Stomatopoda , 1934 .

[25]  K. R. Weiss,et al.  Compartmentalization of Information Processing in anAplysia Feeding Circuit Interneuron through Membrane Properties and Synaptic Interactions , 1998, The Journal of Neuroscience.

[26]  E. Mayeri,et al.  A Relaxation Oscillator Description of the Burst-Generating Mechanism in the Cardiac Ganglion of the Lobster, Homarus americanus , 1973, The Journal of general physiology.

[27]  D. Livengood,et al.  Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. , 1989, Journal of neurophysiology.

[28]  J. Wilkens Re-evaluation of the stretch sensitivity hypothesis of crustacean hearts: hypoxia, not lack of stretch, causes reduction in heart rate of isolated hearts , 1993 .

[29]  C A Del Negro,et al.  Ionic basis for serotonin-induced bistable membrane properties in guinea pig trigeminal motoneurons. , 1998, Journal of neurophysiology.

[30]  K Tazaki,et al.  Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. , 1990, Journal of neurophysiology.

[31]  I. Hurwitz,et al.  B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. , 1996, Journal of neurophysiology.

[32]  R M Harris-Warrick,et al.  Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. I. Calcium current and its modulation by serotonin. , 1995, Journal of neurophysiology.

[33]  M S Guirguis,et al.  The Role of the Cardioregulatory Nerves in Mediating Heart Rate Responses to Locomotion, Reduced Stroke Volume, and Neurohormones in Homarus americanus. , 1995, The Biological bulletin.

[34]  B. Katz,et al.  The effect of inhibitory nerve impulses on a crustacean muscle fibre , 1953, The Journal of physiology.

[35]  H. Yamagishi,et al.  Physiological Anatomy, Burst Formation, and Burst Frequency of the Cardiac Ganglion of Crustaceans , 1990, Physiological Zoology.

[36]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. II. PATTERN AND INTERACTION IN BURST FORMATION , 1955 .

[37]  K. Ocorr,et al.  The identification and localization of a catecholamine in the motor neurons of the lobster cardiac ganglion. , 1983, Journal of neurobiology.

[38]  C. A. G. Wiersma,et al.  The Mechanism of the Nervous Regulation of the Crayfish Heart , 1942 .

[39]  Spontaneous inhibitory post-synaptic potentials in the cardiac ganglion preparation of the lobster Panulirus japonicus , 1973 .

[40]  H Hultborn Plateau potentials and their role in regulating motoneuronal firing. , 1999, Progress in brain research.

[41]  W. Kloot The electrophysiology of muscle fibers in the hearts of Decapod Crustaceans , 1970 .

[42]  D. F. Russell,et al.  Synaptic regulation of cellular properties and burst oscillations of neurons in gastric mill system of spiny lobsters, Panulirus interruptus. , 1984, Journal of neurophysiology.

[43]  A. Watanabe,et al.  The Spread of Excitation among Neurons in the Heart Ganglion of the Stomatopod, Squilla oratoria , 1963, The Journal of general physiology.

[44]  Dicaprio Plateau potentials in motor neurons in the ventilatory system of the crab , 1997, The Journal of experimental biology.

[45]  K. Tazaki,et al.  Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster (Homarus americanus). , 1986, Journal of neurophysiology.

[46]  B Bioulac,et al.  Slowly inactivating sodium current (I(NaP)) underlies single-spike activity in rat subthalamic neurons. , 2000, Journal of neurophysiology.

[47]  A. Berlind Dopamine and 5-hydroxytryptamine actions on the cardiac ganglion of the lobster Homarus americanus , 1998, Journal of Comparative Physiology A.

[48]  M. Miller,et al.  Some effects of proctolin on the cardiac ganglion of the Maine Lobster, Homarus americanus (Milne Edwards). , 1981, Journal of neurobiology.

[49]  K. Kuwasawa,et al.  Periodic bursts in large cell preparations of the lobster cardiac ganglion (Panulirus japonicus) , 1977 .

[50]  I. Cooke,et al.  Regenerative responses of long duration recorded intracellularly from dispersed cell cultures of fetal mouse hypothalamus. , 1982, Journal of neurophysiology.

[51]  A. Berlind,et al.  Cyclic Adenosine Monophosphate Mediation of Peptide Neurohormone Effects on the Lobster Cardiac Ganglion , 1981 .

[52]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[53]  D. Maynard ACTIVITY IN A CRUSTACEAN GANGLION. I. CARDIO-INHIBITION AND ACCELERATION IN PANULIRUS ARGUS , 1953 .

[54]  R S Zucker,et al.  Calcium‐dependent inward current in Aplysia bursting pace‐maker neurones. , 1985, The Journal of physiology.

[55]  R. Smith The action of electrical stimulation and of certain drugs on cardiac nerves of the crab, Cancer irroratus. , 1947, The Biological bulletin.

[56]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[57]  K Kusano,et al.  Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. , 1972, Journal of neurophysiology.

[58]  J. Benson,et al.  Excitatory Effects of Dopamine on the Cardiac Ganglia of the Crabs Portunus Sanguinolentus and Podophthalmus Vigil. , 1984, The Journal of experimental biology.

[59]  E. Kravitz,et al.  Purification and characterization of FMRFamidelike immunoreactive substances from the lobster nervous system: Isolation and sequence analysis of two closely related peptides , 1987, The Journal of comparative neurology.

[60]  B. Santoro,et al.  The HCN Gene Family: Molecular Basis of the Hyperpolarization‐Activated Pacemaker Channels , 1999, Annals of the New York Academy of Sciences.

[61]  Hans Hultborn,et al.  Plateau potentials and their role in regulating motoneuronal firing. , 2002, Advances in experimental medicine and biology.

[62]  J. Hancox,et al.  Plateau potentials drive axonal impulse bursts in insect motoneurons , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  Theodore H. Bullock,et al.  Effects of Presetting the Membrane Potential of the Soma of Spontaneous and Integrating Ganglion Cells , 1959, Physiological Zoology.

[64]  Danny Dolev,et al.  Fault tolerance in the cardiac ganglion of the lobster , 1999, Biological Cybernetics.

[65]  J. Wilkens,et al.  The effects of six pericardial hormones and hypoxia on the semi-isolated heart and sternal arterial valve of the lobster Homarus americanus☆ , 1996 .

[66]  J. Benson,et al.  Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab, Portunus sanguinolentus. , 1980, The Journal of experimental biology.

[67]  J. Wilkens,et al.  Comparison of the effects of five hormones on intact and open heart cardiac ganglionic output and myocardial contractility in the shore crab Carcinus maenas , 1998 .

[68]  J. Kerrison,et al.  The effects of gamma-aminobutyric acid on voltage-clamped motoneurons of the lobster cardiac ganglion. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[69]  J. Freschi Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion , 1989, Neuroscience Letters.

[70]  H. Atwood,et al.  Organization and synaptic physiology of crustacean neuromuscular systems , 1976, Progress in Neurobiology.

[71]  J. Alexandrowicz Innervation of the heart of Ligia oceanica , 1952 .

[72]  J. Wilkens,et al.  Peptidergic Modulation of Cardiac Performance in Isolated Hearts from the Shore Crab Carcinus maenas , 1993, Physiological Zoology.

[73]  D. Barker,et al.  Structure and function of spiny lobster ligamental nerve plexuses: evidence for synthesis, storage, and secretion of biogenic amines. , 1977, Journal of neurobiology.

[74]  A. Ebara,et al.  Combined effects of 5-hydroxytryptamine and filling pressure on the isolated heart of the lobster,Panulirus japonicus , 1988, Journal of Comparative Physiology B.

[75]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[76]  R. Calabrese,et al.  Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  J. Wilkens,et al.  Proctolin affects the activity of the cardiac ganglion, myocardium, and cardioarterial valves in Carcinus maenas hearts , 1998, Journal of Comparative Physiology B.

[78]  J. Alexandrowicz Memoirs: The Innervation of the heart of the Crustacea. I. Decapoda , 1932 .

[79]  I. Orchard,et al.  Isolation of two FMRFamide-related peptides from crayfish pericardial organs , 1993, Peptides.

[80]  M. Miller,et al.  Cholinergic activation of the lobster cardiac ganglion. , 1990, Journal of neurobiology.

[81]  A. Ebara,et al.  Neurohormonal Modulation of the Cardiac Outflow Through the Cardioarterial Valve in the Lobster , 1984 .

[82]  J. Benson Synaptic and regenerative responses of cardiac muscle fibres in the crab,Portunus sanguinolentus , 1981, Journal of comparative physiology.

[83]  S. Grillner,et al.  Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. , 1991, Annual review of neuroscience.

[84]  K. Tazaki,et al.  Separation of neuronal sites of driver potential and impulse generation by ligaturing in the cardiac ganglion of the lobster,Homarus americanus , 1983, Journal of comparative physiology.

[85]  R. Sullivan A proctolin‐like peptide in crab pericardial organs , 1979 .

[86]  J. Wilkens Evolution of the Cardiovascular System in Crustacea , 1999 .

[87]  D. F. Russell,et al.  Bursting neural networks: a reexamination. , 1978, Science.

[88]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[89]  A. Mercier,et al.  Modulation of Crayfish Hearts by FMRFamide-related Peptides. , 1992, The Biological bulletin.

[90]  M. Miller,et al.  Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. , 1984, Journal of Neurobiology.

[91]  A. Watanabe,et al.  Acceleratory Synapses on Pacemaker Neurons in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1968, The Journal of general physiology.

[92]  A. Berlind Spontaneous and repetitive driver potentials in crab cardiac ganglion neurons , 1982, Journal of comparative physiology.

[93]  H. Brown ELECTROPHYSIOLOGICAL INVESTIGATIONS OF THE HEART OF SQUILLA MANTIS. II. THE HEART MUSCLE. , 1964, The Journal of experimental biology.

[94]  K. Tazaki IMPULSE ACTIVITY AND PATTERN OF LARGE AND SMALL NEURONES IN THE CARDIAC GANGLION OF THE LOBSTER, PANULIRUS JAPONICUS , 1973 .

[95]  T. Wiens,et al.  Small systems of neurons: control of rhythmic and reflex activities , 1982 .

[96]  D. F. Russell,et al.  Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus. , 1982, Journal of neurophysiology.

[97]  R. Harris-Warrick In: Dynamic Biological Networks: The Stomatogastric Nervous System , 1992 .

[98]  K Tazaki,et al.  The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crab, Eriocheir japonicus. , 1971, The Japanese journal of physiology.

[99]  N. Syed,et al.  In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. , 1999, Journal of neurophysiology.

[100]  R. Harris-Warrick,et al.  5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. , 1992, Journal of neurophysiology.

[101]  Cooke Im The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. , 1966 .

[102]  A. Berlind Heterogeneity of motorneuron driver potential properties along the anterior-posterior axis of the lobster cardiac ganglion , 1993, Brain Research.

[103]  H. Brown ELECTROPHYSIOLOGICAL INVESTIGATIONS OF THE HEART OF SQUILLA MANTIS. II. THE HEART MUSCLE. , 1964, The Journal of experimental biology.

[104]  J. Benson Octopamine alters rhythmic activity in the isolated cardiac ganglion of the crab, Portunus sanguinolentus , 1984, Neuroscience Letters.

[105]  E. Florey,et al.  The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. , 1978, Comparative biochemistry and physiology. C: Comparative pharmacology.

[106]  D. Hartline,et al.  Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobster Homarus americanus. , 1975, The Journal of experimental biology.

[107]  C. Terzuolo,et al.  Acceleration and inhibition in crustacean ganglion cells , 1958 .

[108]  A. Ebara,et al.  Effects of perfusion pressure on the bursting neurones in the intact or segmented cardiac ganglion of the lobster, Panulirus japonicus , 1985, Journal of neuroscience research.

[109]  D. Hartline,et al.  Postsynaptic Membrane Response Predicted from Presynaptic Input Pattern in Lobster Cardiac Ganglion , 1969, Science.

[110]  J. Alexandrowicz Nervous Organs in the Pericardial Cavity of the Decapod Crustacea , 1953, Journal of the Marine Biological Association of the United Kingdom.

[111]  W. Otto Friesen,et al.  Physiological anatomy and burst pattern in the cardiac ganglion of the spiny lobsterPanulirus interruptus , 1975, Journal of comparative physiology.

[112]  H. Dircksen Distribution and physiology of crustacean cardioactive peptide in arthropods , 1994 .

[113]  K. Tazaki,et al.  Isolation and characterization of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[114]  Toyohiro Akiyama,et al.  Pacemaker Potentials for the Periodic Burst Discharge in the Heart Ganglion of a Stomatopod, Squilla oratoria , 1967, The Journal of general physiology.

[115]  K. Tazaki The burst activity of different cell regions and intercellular co-ordination in the cardiac ganglion of the crab, Eriocheir japonicus. , 1972, The Journal of experimental biology.

[116]  Combined effects of octopamine and filling pressure on the isolated heart of the lobster, Panulirus japonicus , 2004, Journal of Comparative Physiology B.

[117]  W. Otto Friesen,et al.  Antifacilitation and facilitation in the cardiac ganglion of the spiny lobsterPanulirus interruptus , 1975, Journal of comparative physiology.

[118]  P. Morganelli,et al.  Nerve terminals and synapses in the cardiac ganglion of the adult lobster Homarus americanus , 1987, Journal of morphology.

[119]  I. Cooke,et al.  Neural activation of the heart of the lobster Homarus americanus. , 1971, The Journal of experimental biology.

[120]  E. Kandel Small systems of neurons. , 1979, Scientific American.

[121]  D. Hartline Integrative Neurophysiology of the Lobster Cardiac Ganglion , 1979 .

[122]  S. Hagiwara,et al.  Potential changes in syncytial neurons of lobster cardiac ganglion. , 1959, Journal of neurophysiology.

[123]  J. Connor,et al.  Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. , 1969, The Journal of experimental biology.

[124]  Y. Yaari,et al.  Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons , 2001, The Journal of Neuroscience.

[125]  D. Smith,et al.  Electrophysiological and structural studies on the heart muscle of the lobster Homarus americanus. , 1971, Tissue & cell.

[126]  The mechanism of the burst formation in the cardiac ganglion of the lobster (Panulirus japonicus): A re-examination , 1987, Journal of Comparative Physiology A.

[127]  E. Marder,et al.  The roles of co-transmission in neural network modulation , 2001, Trends in Neurosciences.

[128]  E. A. Maynard Microscopic localization of cholinesterases in the nervous systems of the lobsters, Panulirus argus and Homarus americanus. , 1971, Tissue & cell.

[129]  O Kiehn,et al.  Serotonin‐induced bistability of turtle motoneurones caused by a nifedipine‐sensitive calcium plateau potential. , 1989, The Journal of physiology.

[130]  K. Tazaki,et al.  Ionic bases of slow, depolarizing responses of cardiac ganglion neurons in the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[131]  S. Hagiwara,et al.  Nervous activities of the heart in Crustacea. , 1961, Ergebnisse der Biologie.

[132]  W. Otto Friesen,et al.  Synaptic interactions in the cardiac ganglion of the spiny lobsterPanulirus interruptus , 1975, Journal of comparative physiology.

[133]  A. Berlind,et al.  Feedback from motor neurones to pacemaker neurones in lobster cardiac ganglion contributes to regulation of burst frequency , 1989 .

[134]  A. Berlind Effects of haloperidol and phentolamine on the crustacean cardiac ganglion. , 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[135]  R. Orkand,et al.  The relation between membrane potential and contraction in single crayfish muscle fibres , 1962, The Journal of physiology.

[136]  I. Cooke,et al.  Driver potentials and the organization of rhythmic bursting in crustacean ganglia , 1984, Trends in Neurosciences.

[137]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[138]  Theodore H. Bullock,et al.  Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion , 1960, The Journal of general physiology.

[139]  W. Hawkins,et al.  A Light and Electron Microscopic Study of the Cardiac Ganglion of the Blue Crab Callinectes sapidus Rathbun , 1978 .

[140]  A. Ebara,et al.  Effects of Perfusion Pressure on the Isolated Heart of the Lobster, Panulirus Japonicus , 1984 .

[141]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[142]  J. Alexandrowicz,et al.  Some Experiments on the Function of the Pericardial Organs in Crustacea , 1953, Journal of the Marine Biological Association of the United Kingdom.

[143]  K Tazaki,et al.  Spontaneous electrical activity and interaction of large and small cells in cardiac ganglion of the crab, Portunus sanguinolentus. , 1979, Journal of neurophysiology.

[144]  P. S. Dickinson,et al.  Control of a central pattern generator by an identified modulatory interneurone in crustacea. II. Induction and modification of plateau properties in pyloric neurones. , 1983, The Journal of experimental biology.

[145]  I. Cooke Physiology of the Crustacean Cardiac Ganglion , 2002 .

[146]  O. Kiehn,et al.  Functional role of plateau potentials in vertebrate motor neurons , 1998, Current Opinion in Neurobiology.

[147]  E. Florey,et al.  Facilitation and Potentiation of Transmitter Release at Neuromuscular Synapses in the Heart of Squilla Mantis : Functional and Theoretical Implications , 1990 .

[148]  K. Hama,et al.  CONTACT OF ADJACENT NERVE FIBERS IN THE CARDIAC NERVE OF MANTIS SHRIMP , 1965 .

[149]  I. Cooke,et al.  Structure and localization of synaptic complexes in the cardiac ganglion of a portunid crab , 1987, Journal of neurocytology.

[150]  T. Tameyasu Intracellular potentials in the small cells and cellular interaction in the cardiac ganglion of the lobster Panulirus japonicus. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[151]  S. W. Kuffler,et al.  PROCESSES OF EXCITATION IN THE DENDRITES AND IN THE SOMA OF SINGLE ISOLATED SENSORY NERVE CELLS OF THE LOBSTER AND CRAYFISH , 1955, The Journal of general physiology.

[152]  E. Marder,et al.  Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. , 1992, Journal of neurophysiology.

[153]  K. Tazaki,et al.  Topographical localization of function in the cardiac ganglion of the crab,Portunus sanguinolentus , 1983, Journal of comparative physiology.

[154]  J. Feldman,et al.  PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. , 1998, Annual review of physiology.

[155]  Sodium-dependent plateau potentials in cultured Retzius cells of the medicinal leech. , 1996, Journal of neurophysiology.

[156]  The effects of glutamate agonists on voltage-clamped motoneurons of the lobster cardiac ganglion. , 1992, The Journal of experimental biology.

[157]  H. Yamagishi,et al.  Myogenic Heartbeat in the Primitive Crustacean Triops longicaudatus. , 1997, The Biological bulletin.