Rare-earth/transition-metal magnets at finite temperature: Self-interaction-corrected relativistic density functional theory in the disordered local moment picture

Atomic-scale computational modeling of technologically-relevant permanent magnetic materials faces two key challenges. First, a material's magnetic properties depend sensitively on temperature, so the calculations must account for thermally-induced magnetic disorder. Second, the most widely-used permanent magnets are based on rare-earth elements, whose highly-localized 4f electrons are poorly described by standard electronic structure methods. Here, we take two established theories --- the disordered local moment picture of thermally-induced magnetic disorder and self-interaction-corrected density-functional theory --- and devise a computational framework to overcome these challenges. Using the new approach, we calculate magnetic moments and Curie temperatures of the rare-earth cobalt (RECo5) family for RE=Y--Lu. The calculations correctly reproduce the experimentally-measured trends across the series and confirm that, apart from the hypothetical compound EuCo5, SmCo5 has the strongest magnetic properties at high temperature. An order parameter analysis demonstrates that varying the RE has a surprisingly strong effect on the Co--Co magnetic interactions determining the Curie temperature, even when the lattice parameters are kept fixed. We propose the origin of this behavior is a small contribution to the density from f-character electrons located close to the Fermi level.

[1]  J. Staunton,et al.  Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions. , 2016, Physical review letters.

[2]  B. Johansson,et al.  3d-5d band magnetism in rare earth transition metal intermetallics: LuFe2 , 1989 .

[3]  Fähnle,et al.  Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth-transition-metal intermetallics. I. Description of the formalism and application to the series RCo5 (R=rare-earth atom). , 1996, Physical review. B, Condensed matter.

[4]  B. L. Gyorffy,et al.  Relativistic spin-polarised scattering theory-solution of the single-site problem , 1984 .

[5]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[6]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[7]  M. Richter REVIEW ARTICLE: Band structure theory of magnetism in 3d-4f compounds , 1998 .

[8]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[9]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[10]  D. Sellmyer,et al.  Exchange interactions and Curie temperature of Y-Co compounds , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[11]  T. Miyake,et al.  First-principles study of intersite magnetic couplings in NdFe12 and NdFe12X (X = B, C, N, O, F) , 2016, 1612.04478.

[12]  J. Staunton,et al.  Lanthanide contraction and magnetism in the heavy rare earth elements , 2007, Nature.

[13]  Ute Hoffmann,et al.  Magnetic Properties Of Rare Earth Metals , 2016 .

[14]  Johansson,et al.  Orbital magnetism in Fe, Co, and Ni. , 1990, Physical review. B, Condensed matter.

[15]  T. Miyazaki,et al.  The Physics of Ferromagnetism , 2012 .

[16]  C. Patrick,et al.  Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped YCo5 and GdCo5 , 2017, 1708.00288.

[17]  J. M. D. Coey,et al.  Hard Magnetic Materials: A Perspective , 2011, IEEE Transactions on Magnetics.

[18]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[19]  Kaplesh Kumar,et al.  RETM5 and RE2TM17 permanent magnets development , 1988 .

[20]  M. Katsnelson,et al.  Standard model of the rare earths analyzed from the Hubbard I approximation , 2015, 1512.02848.

[21]  Self-interaction correction in multiple scattering theory , 2004, cond-mat/0406515.

[22]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[23]  Frederick E. Pinkerton,et al.  Pr‐Fe and Nd‐Fe‐based materials: A new class of high‐performance permanent magnets (invited) , 1984 .

[24]  K.H.J. Buschow,et al.  Handbook of Magnetic Materials , 2003 .

[25]  Geetha Balakrishnan,et al.  Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets. , 2018, Physical review letters.

[26]  A. Dick,et al.  Pressure dependence of the Curie temperature in bcc iron studied by ab initio simulations , 2009 .

[27]  M. Richter,et al.  Electronic structure of ferromagnetic rare-earth-transition-metal compounds , 1991 .

[28]  B. Ginatempo,et al.  Algorithms for Korringa-Kohn-Rostoker electronic structure calculations in any Bravais lattice , 1997 .

[29]  Paweł T. Jochym,et al.  Lattice dynamics of neodymium: Influence of 4 f electron correlations , 2016 .

[30]  G. L. Payne,et al.  Relativistic Quantum Mechanics , 2007 .

[31]  B. Johansson,et al.  3d-5d band magnetism in rare earth-transition metal intermetallics: total and partial magnetic moments of the RFe2 (R=Gd-Yb) Laves phase compounds , 1991 .

[32]  B. Johansson,et al.  Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni , 1997 .

[33]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[34]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[35]  F. Illas,et al.  Extent and limitations of density-functional theory in describing magnetic systems , 2004 .

[36]  T. Björkman,et al.  Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications , 2011, 1110.2606.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Takashi Miyake,et al.  Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach , 2017, 1705.08027.

[39]  P. Larson,et al.  Effects of doping on the magnetic anisotropy energy in SmCo 5 − x Fe x and YCo 5 − x Fe x , 2004 .

[40]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[41]  J. Staunton,et al.  Metallic magnetism at finite temperatures studied by relativistic disordered moment description : theory and applications , 2014, 1403.2904.

[42]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[43]  B. Fultz,et al.  Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment. , 2014, Physical review letters.

[44]  P. Strange,et al.  Understanding the valency of rare earths from first-principles theory , 1999, Nature.

[45]  J. Staunton The electronic structure of magnetic transition metallic materials , 1994 .

[46]  P. Larson,et al.  Calculation of magnetic anisotropy energy inSmCo5 , 2003, cond-mat/0303368.

[47]  S. Lebègue,et al.  Electronic structure and spectroscopic properties of thulium monochalcogenides , 2005 .

[48]  W. Hergert,et al.  Self-interaction correction in multiple scattering theory: application to transition metal oxides , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  M. Richter,et al.  Itinerant-electron magnetocrystalline anisotropy energy of YCo 5 and related compounds , 2001 .

[50]  F. Aryasetiawan,et al.  Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme , 2010, 1004.1321.

[51]  Johansson,et al.  Theory of ferromagnetism in CeCo5. , 1990, Physical review. B, Condensed matter.

[52]  C. Ross Found , 1869, The Dental register.

[53]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[54]  Y. Kvashnin,et al.  Prediction of the new efficient permanent magnet SmCoNiFe 3 , 2017, 1708.08957.

[55]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .

[56]  V. Nassif,et al.  Magnetic Structure of SmCo5 from 5 K to the Curie Temperature. , 2018, Inorganic chemistry.

[57]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[58]  P. Phariseau,et al.  Electrons in disordered metals and at metallic surfaces , 1979 .

[59]  Volker Zepf Rare Earth Elements: What and Where They Are , 2013 .

[60]  K. Buschow,et al.  Intermetallic compounds of rare-earth and 3d transition metals , 1977 .

[61]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[62]  R. Elliott Magnetic properties of rare earth metals , 1972 .

[63]  I. Turek,et al.  Ab initio theory of exchange interactions and the Curie temperature of bulk Gd , 2003 .

[64]  Ole Krogh Andersen,et al.  The Muffin-Tin-Orbital Point of View , 1991 .

[65]  Hong,et al.  Magnetic properties of R ions in RCo5 compounds (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). , 1991, Physical review. B, Condensed matter.

[66]  B. L. Gyorffy,et al.  Temperature dependence of magnetic anisotropy: An ab initio approach , 2006 .

[67]  Hubert Ebert,et al.  Fully Relativistic Band Structure Calculations for Magnetic Solids - Formalism and Application , 1999 .

[68]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[69]  G. Hoffer,et al.  A Family of New Cobalt‐Base Permanent Magnet Materials , 1967 .

[70]  E. A. Nesbitt,et al.  Magnetic Moments of Intermetallic Compounds of Transition and Rare‐Earth Elements , 1962 .

[71]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[72]  M. Sagawa,et al.  New material for permanent magnets on a base of Nd and Fe (invited) , 1984 .

[73]  Magn. , 2020, Catalysis from A to Z.

[74]  P. Turchi,et al.  Ground-state properties of rare-earth metals: an evaluation of density-functional theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  Ezio Bruno,et al.  Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L1(0)-ordered FePt. , 2004, Physical review letters.