Integrable geometric flows for curves in pseudoconformal S3

Abstract We consider evolution equations for curves in the 3-dimensional sphere S 3 that are invariant under the group S U ( 2 , 1 ) of pseudoconformal transformations, which preserves the standard contact structure on the sphere. In particular, we investigate how invariant evolutions of Legendrian and transverse curves induce both new and well-known integrable systems and hierarchies at the level of their geometric invariants.

[1]  Emilio Musso Liouville integrability of a variational problem for Legendrian curves in the three-dimensional sphere; , 2002 .

[2]  J. Landsberg,et al.  Cartan for beginners , 2003 .

[3]  Annalisa Calini,et al.  Finite-Gap Solutions of the Vortex Filament Equation: Isoperiodic Deformations , 2007, J. Nonlinear Sci..

[4]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[5]  V. V. Sokolov,et al.  Lie algebras and equations of Korteweg-de Vries type , 1985 .

[6]  J. Landsberg,et al.  Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Second Edition , 2016 .

[7]  Da Rios,et al.  On the motion of an unbounded fluid with a vortex filament of any shape , 1906 .

[8]  P. Santini,et al.  An elementary geometric characterization of the integrable motions of a curve , 1994 .

[9]  U. Pinkall Hamiltonian flows on the space of star-shaped curves , 1995 .

[10]  Jing Ping Wang A List of 1+1 Dimensional Integrable Equations and Their Properties , 2002 .

[11]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[12]  S. Lafortune,et al.  Squared eigenfunctions and linear stability properties of closed vortex filaments , 2011 .

[13]  T. Ivey,et al.  Integrable Flows for Starlike Curves in Centroaffine Space , 2013, 1303.1259.

[14]  T. Ivey,et al.  Stability of small-amplitude torus knot solutions of the localized induction approximation , 2011 .

[15]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[16]  Joel Langer,et al.  Curve motion inducing modified Korteweg-de Vries systems , 1998 .

[17]  Annalisa Calini,et al.  Finite-Gap Solutions of the Vortex Filament Equation: Genus One Solutions and Symmetric Solutions , 2005, J. Nonlinear Sci..

[18]  S. Lafortune,et al.  Stability of closed solutions to the vortex filament equation hierarchy with application to the Hirota equation , 2018 .

[19]  Luigi Sante Da Rios Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque , 1906 .

[20]  A. Mikhailov,et al.  On Classification of Integrable Nonevolutionary Equations , 2006, nlin/0601046.

[21]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[22]  Peter J. Olver,et al.  Moving frames and differential invariants in centro-affine geometry , 2010 .

[23]  A d’Alembert Formula for Hopf Hypersurfaces , 2009, 0912.0649.

[24]  G. Segal Unitary representations of some infinite dimensional groups , 1981 .

[25]  C. Qu,et al.  Integrable motions of space curves in affine geometry , 2002 .