rBAN: retro-biosynthetic analysis of nonribosomal peptides

[1]  Kai Blin,et al.  Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters , 2017, Briefings Bioinform..

[2]  T. Schmeing,et al.  Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[3]  Tianhong Zhang,et al.  HELM Software for Biopolymers , 2017, Journal of Chemical Information and Modeling.

[4]  M. Marahiel,et al.  Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis , 2016, Proceedings of the National Academy of Sciences.

[5]  Chad W. Johnston,et al.  Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. , 2016, Nature chemical biology.

[6]  D. Newman,et al.  Natural Products as Sources of New Drugs from 1981 to 2014. , 2016, Journal of natural products.

[7]  Valérie Leclère,et al.  Smiles2Monomers: a link between chemical and biological structures for polymers , 2015, Journal of Cheminformatics.

[8]  Valérie Leclère,et al.  Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing , 2015, Nucleic Acids Res..

[9]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[10]  Mona Singh,et al.  molBLOCKS: decomposing small molecule sets and uncovering enriched fragments , 2014, Bioinform..

[11]  Zukang Feng,et al.  Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank , 2014, Biopolymers.

[12]  Naomie Salim,et al.  Prediction of New Bioactive Molecules using a Bayesian Belief Network , 2014, J. Chem. Inf. Model..

[13]  L. Filipe,et al.  Oportunidades para inovação no tratamento da leishmaniose usando o potencial das plantas e produtos naturais como fontes de novos fármacos Potential for innovation in the treatment of leishmaniasis using plants and natural products as sources of new drugs , 2013 .

[14]  A. Truman,et al.  Identification and characterisation of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diversity of ribosomal peptides , 2012 .

[15]  Ammar Abdo,et al.  A new fingerprint to predict nonribosomal peptides activity , 2012, Journal of Computer-Aided Molecular Design.

[16]  Hongli Li,et al.  HELM: A Hierarchical Notation Language for Complex Biomolecule Structure Representation , 2012, J. Chem. Inf. Model..

[17]  S. Bruner,et al.  Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. , 2012, Natural product reports.

[18]  M. Marahiel,et al.  Ribosome‐independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity , 2012, FEBS letters.

[19]  William Lingran Chen,et al.  Self-Contained Sequence Representation: Bridging the Gap between Bioinformatics and Cheminformatics , 2011, J. Chem. Inf. Model..

[20]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[21]  Gregory Kucherov,et al.  Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity , 2010, Journal of bacteriology.

[22]  A. Becker,et al.  Ampullosporin A, a peptaibol from Sepedonium ampullosporum HKI-0053 with neuroleptic-like activity , 2009, Behavioural Brain Research.

[23]  Gregory Kucherov,et al.  Structural pattern matching of nonribosomal peptides , 2009, BMC Structural Biology.

[24]  Matthias Rarey,et al.  On the Art of Compiling and Using 'Drug‐Like' Chemical Fragment Spaces , 2008, ChemMedChem.

[25]  C. Walsh,et al.  Morphing peptide backbones into heterocycles , 2008, Proceedings of the National Academy of Sciences.

[26]  Michael G Thomas,et al.  Nonribosomal peptide synthetases involved in the production of medically relevant natural products. , 2008, Molecular pharmaceutics.

[27]  Gregory Kucherov,et al.  NORINE: a database of nonribosomal peptides , 2007, Nucleic Acids Res..

[28]  M. K. Harper,et al.  Halogenated cyclic peptides isolated from the sponge Corticium sp. , 2007, Journal of natural products.

[29]  G. Scriba,et al.  Analysis of the lipophilic peptaibol alamethicin by nonaqueous capillary electrophoresis‐electrospray ionization‐mass spectrometry , 2005, Electrophoresis.

[30]  T. Sano,et al.  Leucine aminopeptidase M inhibitors, cyanostatin A and B, isolated from cyanobacterial water blooms in Scotland. , 2005, Phytochemistry.

[31]  G. Bringmann,et al.  Petrosifungins A and B, novel cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum. , 2004, Journal of natural products.

[32]  J. Sühnel,et al.  Crystal structure and conformational analysis of ampullosporin A , 2003, Journal of Peptide Science.

[33]  W. Gerwick,et al.  The guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. , 2003, Journal of natural products.

[34]  H. Berman,et al.  Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank , 2022 .

[35]  M. Pedras,et al.  The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. , 2002, Phytochemistry.

[36]  B. Schlegel,et al.  Ampullosporins B, C, D, E1, E2, E3 and E4 from Sepedonium ampullosporum HKI-0053: Structures and Biological Activities , 2001 .

[37]  M. Pedras,et al.  In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: Avoiding cell death and overcoming the fungal invader. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Murphy,et al.  Electrospray ionization mass spectrometry of , 2000, Journal of the American Society for Mass Spectrometry.

[39]  L. Pannell,et al.  Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei, collected in Papua New Guinea , 1999 .

[40]  K. Ishida,et al.  Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). , 1999, Bioorganic & medicinal chemistry letters.

[41]  J. Lefèvre,et al.  Bacterial iron transport: 1H NMR determination of the three-dimensional structure of the gallium complex of pyoverdin G4R, the peptidic siderophore of Pseudomonas putida G4R. , 1998, Biochemistry.

[42]  S. Matsunaga,et al.  Cyclotheonamides E2 and E3, new potent serine protease inhibitors from the marine sponge of the genus Theonella. , 1998, Journal of natural products.

[43]  Michael M. Hann,et al.  RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry , 1998, J. Chem. Inf. Comput. Sci..

[44]  T. Sano,et al.  Three dehydrobutyrine-containing microcystins from Nostoc , 1998 .

[45]  E. Schmidt,et al.  Microsclerodermins C-E, antifungal cyclic peptides from the lithistid marine sponges Theonella sp. and Microscleroderma sp , 1998 .

[46]  W. Carmichael,et al.  Seven new microcystins possessing two L-glutamic acid units, isolated from Anabaena sp. strain 186. , 1998, Chemical research in toxicology.

[47]  Y. Kashman,et al.  Oriamide, a new cytotoxic cyclic peptide containing a novel amino acid from the marine sponge Theonella sp , 1997 .

[48]  David Weininger,et al.  CHUCKLES: A method for representing and searching peptide and peptoid sequences on both monomer and atomic levels , 1994, J. Chem. Inf. Comput. Sci..

[49]  S. Matsunaga,et al.  Nazumamide A, a thrombin-inhibitory Tetrapeptide, from a marine sponge, theonella sp.☆ , 1991 .

[50]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[51]  H. Young,et al.  N-Coronafacoyl-L-isoleucine and N-coronafacoyl-L-alloisoleucine, potential biosynthetic intermediates of the phytotoxin coronatine , 1985 .

[52]  M. Teintze,et al.  Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B10. , 1981, Biochemistry.

[53]  R. C. Pandey,et al.  Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry , 1981 .

[54]  Jyoti Lakhani,et al.  Genes to Metabolites and Metabolites to Genes Approaches to Predict Biosynthetic Pathways in Microbes for Natural Product Discovery , 2018 .

[55]  S. Pomponi,et al.  Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp. , 1994, Journal of Natural Products.