Complete classification of reflexive polyhedra in four dimensions

Four dimensional reflexive polyhedra encode the data for smooth Calabi-Yau threefolds that are hypersurfaces in toric varieties, and have important applications both in perturbative and in non-perturbative string theory. We describe how we obtained all 473,800,776 reflexive polyhedra that exist in four dimensions and the 30,108 distinct pairs of Hodge numbers of the resulting Calabi-Yau manifolds. As a by-product we show that all these spaces (and hence the corresponding string vacua) are connected via a chain of singular transitions.

[1]  M. Kreuzer,et al.  REFLEXIVE POLYHEDRA, WEIGHTS AND TORIC CALABI-YAU FIBRATIONS , 2000, math/0001106.

[2]  M. Kreuzer,et al.  Classification of Reflexive Polyhedra in Three Dimensions , 1998, hep-th/9805190.

[3]  P. Candelas,et al.  Duality between the webs of heterotic and type II vacua , 1996, hep-th/9603170.

[4]  M. Kreuzer,et al.  The Web of Calabi-Yau hypersurfaces in toric varieties , 1997, hep-th/9703003.

[5]  M. Kreuzer,et al.  Searching for K3 fibrations , 1996, hep-th/9610154.

[6]  M. Kreuzer,et al.  On the Classification of Reflexive Polyhedra , 1995, hep-th/9512204.

[7]  H. Skarke WEIGHT SYSTEMS FOR TORIC CALABI-YAU VARIETIES AND REFLEXIVITY OF NEWTON POLYHEDRA , 1996, alg-geom/9603007.

[8]  D. Jancic,et al.  On the connectedness of the moduli space of Calabi-Yau manifolds , 1995, hep-th/9511230.

[9]  M. Gross,et al.  Black hole condensation and the web of Calabi-Yau manifolds , 1995, hep-th/9511204.

[10]  Black hole condensation and the unification of string vacua , 1995, hep-th/9504145.

[11]  A. Strominger Massless black holes and conifolds in string theory , 1995, hep-th/9504090.

[12]  Ian T. Young,et al.  mirror manifolds and spacetime topology change in string theory , 1993, hep-th/9309097.

[13]  David A. Cox The homogeneous coordinate ring of a toric variety , 2013 .

[14]  Victor V. Batyrev,et al.  Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties , 1993, alg-geom/9310003.

[15]  B. Greene,et al.  Multiple mirror manifolds and topology change in string theory , 1993, hep-th/9301043.

[16]  E. Witten Phases of N = 2 theories in two dimensions , 1993, hep-th/9301042.

[17]  M. Kreuzer,et al.  All abelian symmetries of Landau-Ginzburg potentials , 1992, hep-th/9211047.

[18]  Tristan Hubsch,et al.  A generalized construction of mirror manifolds , 1992, Nuclear Physics B.

[19]  M. Kreuzer,et al.  NO MIRROR SYMMETRY IN LANDAU-GINZBURG SPECTRA! , 1992, hep-th/9205004.

[20]  A. Klemm,et al.  Landau-Ginzburg string vacua , 1992 .

[21]  Xenia de la Ossa,et al.  A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .

[22]  Xenia de la Ossa,et al.  An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds☆ , 1991 .

[23]  M. Lynker,et al.  Calabi-Yau manifolds in weighted P4 , 1990 .

[24]  B. Greene,et al.  Duality in {Calabi-Yau} Moduli Space , 1990 .

[25]  Nicholas P. Warner,et al.  Chiral rings in N = 2 superconformal theories , 1989 .

[26]  M. Reid The moduli space of 3-folds withK=0 may nevertheless be irreducible , 1987 .

[27]  J. Pati,et al.  Superstrings, unified theories and cosmology , 1987 .

[28]  E. Witten,et al.  Vacuum configurations for superstrings , 1985 .