Recognition and positioning of rigid objects using algebraic moment invariants

Toward the development of an object recognition and positioning system, able to deal with arbitrary shaped objects in cluttered environments, methods for matching two arbitrarily shaped regions of different objects are introduced, and how to efficiently compute the coordinate transformation which makes two matching regions coincide is shown. In both cases, matching and positioning, the results are invariant with respect to viewer coordinate system, and these techniques apply to both 2-D and 3-D problems, under either Euclidean or affine coordinate transformations. The 3-D Euclidean case is useful for the recognition and positioning of solid objects from range data, and the 2-D affine case for the recognition and positioning of solid objects from projections, e.g., from curves in a single image, and in motion estimation. The matching of arbitrarily shaped regions is done by computing for each region a vector of centered moments. These vectors are viewpoint-dependent, but the dependence on the viewpoint is algebraic and well known. This paper presents a new family of computationally efficient algorithms based on matrix computations, for the evaluation of both Euclidean and affine algebraic moment invariants of data sets. The use of algebraic moment invariants greatly reduces the computation required for the matching and, hence, initial object recognition. The approach to determining and computing these moment invariants is different than those used by the vision community previously. The method for computing the coordinate transformation which makes the two matching regions coincide provides an estimate of object position. The estimation of the matching transformation is based on the same matrix computation techniques introduced for the computation of invariants. It involves simple manipulations of the moment vectors. It neither requires costly iterative methods, nor going back to the data set. These geometric invariant methods appear to be very important for dealing with the situation of a large number of different possible objects in the presence of occlusion and clutter, and the approach to computing these moment invariants is different than those used by the vision community previously.

[1]  D. Hilbert Über die Theorie der algebraischen Formen , 1890 .

[2]  D. Hilbert Ueber die vollen Invariantensysteme , .

[3]  G. M.,et al.  An Introduction to the Algebra of Quantics , 1895, Nature.

[4]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[5]  A. L. Dixon The Eliminant of Three Quantics in two Independent Variables , 1909 .

[6]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[7]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[8]  H. Weyl The Classical Groups , 1939 .

[9]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[10]  T. Apostol Mathematical Analysis , 1957 .

[11]  Franz L. Alt,et al.  Digital Pattern Recognition by Moments , 1962, JACM.

[12]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[13]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[14]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[15]  L. Weisner,et al.  Foundations of the theory of algebraic invariants , 1966 .

[16]  H. Keller,et al.  Analysis of Numerical Methods , 1967 .

[17]  Richard R. Underwood,et al.  Stationary values of the ratio of quadratic forms subject to linear constraints , 1969 .

[18]  Keith A. Paton,et al.  Conic sections in chromosome analysis , 1969, Pattern Recognit..

[19]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[20]  J. Dieudonné,et al.  La théorie des invariants au XIXe siècle , 1971 .

[21]  F.W. Smith,et al.  Automatic Ship Photo Interpretation by the Method of Moments , 1971, IEEE Transactions on Computers.

[22]  R. Biggerstaff,et al.  Three Variations in Dental Arch Form Estimated by a Quadratic Equation , 1972, Journal of dental research.

[23]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[24]  Kenneth J. Turner,et al.  Computer perception of curved objects using a television camera , 1974 .

[25]  Antonio Albano,et al.  Representation of Digitized Contours in Terms of Conic Arcs and Straight-Line Segments , 1974, Comput. Graph. Image Process..

[26]  D. Cooper,et al.  On the cost of approximating and recognizing a noise perturbed straight line or a quadratic curve segment in the plane. [central processing units] , 1975 .

[27]  David B. Cooper,et al.  On the Computational Cost of Approximating and Recognizing Noise-Perturbed Straight Lines and Quadratic Arcs in the Plane , 1976, IEEE Transactions on Computers.

[28]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[29]  J. Ramsay A Comparative Study of Several Robust Estimates of Slope, Intercept, and Scale in Linear Regression , 1977 .

[30]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.

[31]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[32]  Hudai Dirilten,et al.  Pattern Matching Under Affine Transformations , 1977, IEEE Transactions on Computers.

[33]  D. Hilbert,et al.  Hilbert's invariant theory papers , 1978 .

[34]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[35]  J. Gower,et al.  Methods for statistical data analysis of multivariate observations , 1977, A Wiley publication in applied statistics.

[36]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[37]  S. Maitra Moment invariants , 1979, Proceedings of the IEEE.

[38]  S. S. Srivastava,et al.  Correlation in Polynomial Regression , 1979 .

[39]  Donald B. Gennery,et al.  Object Detection and Measurement Using Stereo Vision , 1979, IJCAI.

[40]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[41]  M. Teague Image analysis via the general theory of moments , 1980 .

[42]  Ernest L. Hall,et al.  Three-Dimensional Moment Invariants , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[44]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[45]  S. S. Reddi,et al.  Radial and Angular Moment Invariants for Image Identification , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Ernest L. Hall,et al.  Measuring Curved Surfaces for Robot Vision , 1982, Computer.

[47]  D. Casasent,et al.  Optical system to compute intensity moments: design. , 1982, Applied optics.

[48]  PAUL D. SAMPSON,et al.  Fitting conic sections to "very scattered" data: An iterative refinement of the bookstein algorithm , 1982, Comput. Graph. Image Process..

[49]  J. F. Boyce,et al.  Moment invariants for pattern recognition , 1983, Pattern Recognit. Lett..

[50]  Gene H. Golub,et al.  Matrix computations , 1983 .

[51]  Olivier D. Faugeras,et al.  A 3-D Recognition and Positioning Algorithm Using Geometrical Matching Between Primitive Surfaces , 1983, IJCAI.

[52]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[53]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[54]  Kanatani Ken-Ichi DISTRIBUTION OF DIRECTIONAL DATA AND FABRIC TENSORS , 1984 .

[55]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  K. Kanatani Stereological determination of structural anisotropy , 1984 .

[57]  S. Helgason Groups and geometric analysis , 1984 .

[58]  W. Grimson,et al.  Model-Based Recognition and Localization from Sparse Range or Tactile Data , 1984 .

[59]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[60]  C. B. Wilson,et al.  The mathematical description of shape and form , 1984 .

[61]  David B. Cooper,et al.  Bayesian Recognition of Local 3-D Shape by Approximating Image Intensity Functions with Quadric Polynomials , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  John A. Orr,et al.  Determination of 3-D object orientation from projections , 1985, Pattern Recognit. Lett..

[63]  Y. Gardan Numerical methods for CAD , 1985 .

[64]  Demetri Psaltis,et al.  Image Normalization by Complex Moments , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  John A. Orr,et al.  Applications of Tensor Theory to Object Recognition and Orientation Determination , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Frank M. Hsu,et al.  Least Square Estimation with Applications to Digital Signal Processing , 1985 .

[67]  Jon C. Helton,et al.  Numerical methods in engineering and science , 1986 .

[68]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[69]  David B. Cooper,et al.  On Optimally Combining Pieces of Information, with Application to Estimating 3-D Complex-Object Position from Range Data , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Jake K. Aggarwal,et al.  Curvature-based representation of objects from range data , 1986, Image Vis. Comput..

[71]  Thomas S. Huang,et al.  FINDING 3-D POINT CORRESPONDENCES IN MOTION ESTIMATION. , 1986 .

[72]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[73]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  A. Pentland Recognition by Parts , 1987 .

[75]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[76]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[77]  Terrance E. Boult,et al.  Recovery of superquadrics from depth information , 1987 .

[78]  Mehdi Hatamian,et al.  Optical character recognition by the method of moments , 1987 .

[79]  R. Bajcsy,et al.  Three dimensional object representation revisited , 1987 .

[80]  Paul J. Zsombor-Murray,et al.  Fast algorithm for the computation of moment invariants , 1987, Pattern Recognit..

[81]  R. Bajcsy,et al.  Shape recovery and segmentation with deformable part models , 1987 .

[82]  Baba C. Vemuri,et al.  Representation and recognition of objects from dense range maps , 1987 .

[83]  Micha Sharir,et al.  Identification of Partially Obscured Objects in Two and Three Dimensions by Matching Noisy Characteristic Curves , 1987 .

[84]  Jiawei Hong,et al.  Recognize The Similarity Between Shapes Under Affine Transformation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[85]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[86]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[87]  Gabriel Taubin,et al.  Nonplanar curve and surface estimation in 3-space , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[88]  Haim J. Wolfson,et al.  An improved model-based matching method using footprints , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[89]  David B. Cooper,et al.  A New Model-based Stereo Approach For 3D Surface Reconstruction Using Contours On The Surface Pattern , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[90]  W. Eric L. Grimson,et al.  On the recognition of curved objects , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[91]  Jiawei Hong,et al.  A new approach to point pattern matching , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[92]  Luc Cournoyer,et al.  The NRCC three-dimensional image data files , 1988 .

[93]  Paul J. Besl,et al.  Surfaces in Range Image Understanding , 1988, Springer Series in Perception Engineering.

[94]  Roland T. Chin,et al.  On image analysis by the methods of moments , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[95]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Isaac Weiss,et al.  Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[97]  Rida T. Farouki,et al.  On the numerical condition of algebraic curves and surfaces 1. Implicit equations , 1988, Comput. Aided Geom. Des..

[98]  C. Hoffmann Algebraic curves , 1988 .

[99]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[100]  Terrance E. Boult,et al.  Error Of Fit Measures For Recovering Parametric Solids , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[101]  L. W. Tucker,et al.  Object recognition using the Connection Machine , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[102]  David B. Cooper,et al.  Bayesian Clustering for Unsupervised Estimation of Surface and Texture Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[103]  Terrance E. Boult,et al.  On the Recovery of Superellipsoids , 1988 .

[104]  Tracy L. Faber,et al.  Orientation of 3-D Structures in Medical Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[105]  Ruud M. Bolle,et al.  Visual recognition using concurrent and layered parameter networks , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[106]  J. Schwartz,et al.  Object recognition by geometric hashing , 1989 .

[107]  D. Kriegman,et al.  On recognizing and positioning curved 3D objects from image contours , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[108]  Avinash C. Kak,et al.  A robot vision system for recognizing 3D objects in low-order polynomial time , 1989, IEEE Trans. Syst. Man Cybern..

[109]  David Shi Chen,et al.  A Data-Driven Intermediate Level Feature Extraction Algorithm , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[110]  R. Brockett Least squares matching problems , 1989 .

[111]  David B. Cooper,et al.  Representing and comparing shapes using shape polynomials , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[112]  Hon-Son Don,et al.  3-D Moment Forms: Their Construction and Application to Object Identification and Positioning , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Ruud M. Bolle,et al.  Computer vision research , 1989 .

[114]  G. Rota,et al.  Introduction to Invariant Theory in Superalgebras , 1990 .

[115]  David A. Forsyth,et al.  Projectively invariant representations using implicit algebraic curves , 1990, Image Vis. Comput..

[116]  Haim J. Wolfson On curve matching , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[117]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[118]  C. P. Cox,et al.  A handbook of introductory statistical methods , 1991 .

[119]  W. Wells,et al.  Modern higher algebra , 2022 .