Self-dual and LCD double circulant and double negacirculant codes over $${\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$

Let q be an odd prime power, and denote by $${\mathbb {F}}_q$$ the finite field with q elements. In this paper, we consider the ring $$R={\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$ , where $$u^2=u, v^2=v,uv=vu=0$$ and study double circulant and double negacirculant codes over this ring. We first obtain the necessary and sufficient conditions for a double circulant code to be self-dual (resp. LCD). Then we enumerate self-dual and LCD double circulant and double negacirculant codes over R. Last but not the least, we show that the family of Gray images of self-dual and LCD double circulant codes over R are good. Several numerical examples of self-dual and LCD codes over $${\mathbb {F}}_5$$ as the Gray images of these codes over R are given in short lengths.

[1]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[3]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..

[4]  Vijay K. Bhargava,et al.  Twelve good rate (m-r)/pm quasicyclic codes , 1993, IEEE Trans. Inf. Theory.

[5]  O. Prakash,et al.  A class of constacyclic codes over the ring Z4[u,v]/ and their Gray images , 2019, Filomat.

[6]  Patrick Solé,et al.  Double Circulant Self-Dual and LCD Codes Over ℤp2 , 2019, Int. J. Found. Comput. Sci..

[7]  Ian F. Blake Codes Over Certain Rings , 1972, Inf. Control..

[8]  Liqin Qian,et al.  On self-dual negacirculant codes of index two and four , 2017, Des. Codes Cryptogr..

[9]  Liqin Qian,et al.  On constacyclic codes over Z(4)[u] / and their Gray images , 2017 .

[10]  Cem Güneri,et al.  On self-dual double negacirculant codes , 2016, Discret. Appl. Math..

[11]  Vijay K. Bhargava,et al.  Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes , 1991, IEEE Trans. Inf. Theory.

[12]  Minjia Shi,et al.  Quasi-twisted codes with constacyclic constituent codes , 2016, Finite Fields Their Appl..

[13]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[14]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[15]  Liqin Qian,et al.  On constacyclic codes over Z4[u]/〈u2-1〉 and their Gray images , 2016, Finite Fields Their Appl..

[16]  M. Shi,et al.  On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{d , 2019, Cryptography and Communications.

[17]  Liqin Qian,et al.  On self-dual and LCD double circulant and double negacirculant codes over F q + uF q . , 2018 .

[18]  Pieter Moree,et al.  Artin's Primitive Root Conjecture – A Survey , 2004, Integers.

[19]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[20]  Hongwei Zhu,et al.  On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq$\mathbb {F}_{q}+u\mathbb {F}_{q}$ , 2018, Cryptogr. Commun..

[21]  Liqin Qian,et al.  On self-dual and LCD quasi-twisted codes of index two over a special chain ring , 2018, Cryptography and Communications.

[22]  Nuh Aydin,et al.  On some constacyclic codes over $$\mathbb {Z}_{4}\left[ u\right] /\left\langle u^{2}-1\right\rangle $$Z4u/u2-1, their $$\mathbb {Z}_4$$Z4 images, and new codes , 2018, Des. Codes Cryptogr..

[24]  Minjia Shi,et al.  On self-dual four circulant codes , 2017, Int. J. Found. Comput. Sci..

[25]  Patrick Solé,et al.  On self-dual double circulant codes , 2016, Designs, Codes and Cryptography.

[26]  Patrick Solé,et al.  Quasi-cyclic complementary dual codes , 2016, Finite Fields Their Appl..

[27]  Patrick Solé,et al.  Double circulant self-dual and LCD codes over Galois rings , 2018, Adv. Math. Commun..

[28]  Lin Sok,et al.  Double circulant LCD codes over Z4 , 2019, Finite Fields Their Appl..

[29]  Habibul Islam,et al.  A note on skew constacyclic codes over 픽q + u픽q + v픽q , 2019, Discret. Math. Algorithms Appl..

[30]  Habibul Islam,et al.  New quantum codes from constacyclic and additive constacyclic codes , 2020, Quantum Information Processing.

[31]  O. Prakash,et al.  A class of constacyclic codes over $${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$Z4[u]/⟨uk⟩ , 2018, Journal of Applied Mathematics and Computing.