Self-dual and LCD double circulant and double negacirculant codes over $${\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$
暂无分享,去创建一个
Shikha Yadav | Patrick Solé | Habibul Islam | Om Prakash | P. Solé | O. Prakash | H. Islam | S. Yadav
[1] Patrick Solé,et al. On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.
[3] Patrick Solé,et al. On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..
[4] Vijay K. Bhargava,et al. Twelve good rate (m-r)/pm quasicyclic codes , 1993, IEEE Trans. Inf. Theory.
[5] O. Prakash,et al. A class of constacyclic codes over the ring Z4[u,v]/ and their Gray images , 2019, Filomat.
[6] Patrick Solé,et al. Double Circulant Self-Dual and LCD Codes Over ℤp2 , 2019, Int. J. Found. Comput. Sci..
[7] Ian F. Blake. Codes Over Certain Rings , 1972, Inf. Control..
[8] Liqin Qian,et al. On self-dual negacirculant codes of index two and four , 2017, Des. Codes Cryptogr..
[9] Liqin Qian,et al. On constacyclic codes over Z(4)[u] / and their Gray images , 2017 .
[10] Cem Güneri,et al. On self-dual double negacirculant codes , 2016, Discret. Appl. Math..
[11] Vijay K. Bhargava,et al. Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes , 1991, IEEE Trans. Inf. Theory.
[12] Minjia Shi,et al. Quasi-twisted codes with constacyclic constituent codes , 2016, Finite Fields Their Appl..
[13] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[14] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[15] Liqin Qian,et al. On constacyclic codes over Z4[u]/〈u2-1〉 and their Gray images , 2016, Finite Fields Their Appl..
[16] M. Shi,et al. On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{d , 2019, Cryptography and Communications.
[17] Liqin Qian,et al. On self-dual and LCD double circulant and double negacirculant codes over F q + uF q . , 2018 .
[18] Pieter Moree,et al. Artin's Primitive Root Conjecture – A Survey , 2004, Integers.
[19] W. Bosma,et al. HANDBOOK OF MAGMA FUNCTIONS , 2011 .
[20] Hongwei Zhu,et al. On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq$\mathbb {F}_{q}+u\mathbb {F}_{q}$ , 2018, Cryptogr. Commun..
[21] Liqin Qian,et al. On self-dual and LCD quasi-twisted codes of index two over a special chain ring , 2018, Cryptography and Communications.
[22] Nuh Aydin,et al. On some constacyclic codes over $$\mathbb {Z}_{4}\left[ u\right] /\left\langle u^{2}-1\right\rangle $$Z4u/u2-1, their $$\mathbb {Z}_4$$Z4 images, and new codes , 2018, Des. Codes Cryptogr..
[24] Minjia Shi,et al. On self-dual four circulant codes , 2017, Int. J. Found. Comput. Sci..
[25] Patrick Solé,et al. On self-dual double circulant codes , 2016, Designs, Codes and Cryptography.
[26] Patrick Solé,et al. Quasi-cyclic complementary dual codes , 2016, Finite Fields Their Appl..
[27] Patrick Solé,et al. Double circulant self-dual and LCD codes over Galois rings , 2018, Adv. Math. Commun..
[28] Lin Sok,et al. Double circulant LCD codes over Z4 , 2019, Finite Fields Their Appl..
[29] Habibul Islam,et al. A note on skew constacyclic codes over 픽q + u픽q + v픽q , 2019, Discret. Math. Algorithms Appl..
[30] Habibul Islam,et al. New quantum codes from constacyclic and additive constacyclic codes , 2020, Quantum Information Processing.
[31] O. Prakash,et al. A class of constacyclic codes over $${\mathbb {Z}}_{4}[u]/\langle u^{k}\rangle $$Z4[u]/⟨uk⟩ , 2018, Journal of Applied Mathematics and Computing.