Sonic hyperbolic phase transitions and Chapman-Jouguet detonations

Abstract We prove that the Cauchy problem for an n×n system of strictly hyperbolic conservation laws in one space dimension admits a weak global solution also in presence of sonic phase boundaries. Applications to Chapman–Jouguet detonations, liquid–vapor transitions and elastodynamics are considered.

[1]  Benedetto Piccoli,et al.  Admissible Riemann Solvers for Genuinely Nonlinear p-Systems of Mixed Type☆ , 2002 .

[2]  Benedetto Piccoli,et al.  Global Continuous Riemann Solver for Nonlinear Elasticity , 2001 .

[3]  A. Corli,et al.  Kinetic Stabilization¶of a Nonlinear Sonic Phase Boundary , 2000 .

[4]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[5]  A. Bressan Global solutions of systems of conservation laws by wave-front tracking , 1992 .

[6]  Tong Zhang,et al.  Riemann problem for gasdynamic combustion , 1989 .

[7]  M. Cramer,et al.  Exact solutions for sonic shocks in van der Waals gases , 1987 .

[8]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[9]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[10]  Rinaldo M. Colombo,et al.  Continuous Dependence in Conservation Laws with Phase Transitions , 1999, SIAM J. Math. Anal..

[11]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[12]  D. Amadori Initial-boundary value problems for nonlinear systems of conservation laws , 1997 .

[13]  A. Corli,et al.  Stability of contact discontinuities under perturbations of bounded variation , 1997 .

[14]  A. Bressan,et al.  Unique solutions of 2x2 conservation laws with large data , 1995 .

[15]  Constantine M. Dafermos,et al.  Regularity and large time behaviour of solutions of a conservation law without convexity , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[17]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[18]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .