First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5

We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge(2)Sb(2)Te(5) doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature.

[1]  Crystallization process and amorphous state stability of Si-Sb-Te films for phase change memory , 2007 .

[2]  Andrea L. Lacaita,et al.  Phase‐change memories , 2008 .

[3]  Dae-Hwan Kang,et al.  Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases , 2005 .

[4]  Michele Parrinello,et al.  General and efficient algorithms for obtaining maximally localized Wannier functions , 2000 .

[5]  F. Yan,et al.  Study on the crystallization by an electrical resistance measurement in Ge2Sb2Te5 and N-doped Ge2Sb2Te5 films , 2007 .

[6]  M. Bernasconi,et al.  Vibrational properties of hexagonal Ge2Sb2Te5 from first principles , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Michele Parrinello,et al.  First-principles study of liquid and amorphous Sb 2 Te 3 , 2010 .

[8]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[9]  Matthias Krack,et al.  Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals , 2005 .

[10]  E. Ma,et al.  Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. , 2009, Physical review letters.

[11]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[12]  Y. Ha,et al.  Observation of molecular nitrogen in N-doped Ge2Sb2Te5 , 2006 .

[13]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[14]  Bingchu Cai,et al.  Effects of si doping on the structural and electrical properties of Ge2Sb2Te5 films for phase change random access memory , 2006 .

[15]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[16]  Maximally-localized Wannier functions for disordered systems: application to amorphous silicon , 1998, cond-mat/9804019.

[17]  Y. K. Kim,et al.  Changes in the electronic structures and optical band gap of Ge2Sb2Te5 and N-doped Ge2Sb2Te5 during phase transition , 2007 .

[18]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[19]  Effect of N-implantation on the structural and electrical characteristics of Ge2Sb2Te5 phase change film , 2005 .

[20]  D A Greenwood,et al.  The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .

[21]  M. Cho,et al.  Change in electrical resistance and thermal stability of nitrogen incorporated Ge2Sb2Te5 films , 2007 .

[22]  R. Ahuja,et al.  Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5 , 2008 .

[23]  Mihaly Mezei,et al.  Morphology of Voids in Molecular Systems. A Voronoi−Delaunay Analysis of a Simulated DMPC Membrane , 2004 .

[24]  F. Merget,et al.  Influence of Si and N additions on structure and phase stability of Ge2Sb2Te5 thin films , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  Min-Gon Kim,et al.  Ge nitride formation in N-doped amorphous Ge2Sb2Te5 , 2007 .

[26]  Min Gyu Kim,et al.  Investigation of phase transition of Ge2Sb2Te5 and N-incorporated Ge2Sb2Te5 films using x-ray absorption spectroscopy , 2008 .

[27]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[28]  S. Song,et al.  Nanoscale Phase Separation and Building Blocks of Ge2Sb2Te5N and Ge2Sb2Te5N2 Thin Films , 2009 .

[29]  D. Jeong,et al.  First-principles calculations on the energetics of nitrogen-doped hexagonal Ge2Sb2Te5 , 2010 .

[30]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[31]  Rui Lan,et al.  Electric Resistivity Measurements of Sb2Te3 and Ge2Sb2Te5 Melts Using Four-Terminal Method , 2010 .

[32]  Myong R. Kim,et al.  Crystal Structure and Microstructure of Nitrogen-Doped Ge2Sb2Te5 Thin Film , 2000 .

[33]  N. Yamada,et al.  Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. , 2004, Acta crystallographica. Section B, Structural science.

[34]  E. Rimini,et al.  Amorphous-to-crystal transition of nitrogen- and oxygen-doped Ge2Sb2Te5 films studied by in situ resistance measurements , 2004 .

[35]  Michele Parrinello,et al.  Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. , 2010, Physical review letters.

[36]  M Bernasconi,et al.  First principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  J. Robertson,et al.  Bonding origin of optical contrast in phase-change memory materials , 2010 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Michele Parrinello,et al.  Erratum: Signature of Tetrahedral Ge in the Raman Spectrum of Amorphous Phase-Change Materials [Phys. Rev. Lett. 104, 085503 (2010)] , 2011 .

[40]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[41]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  M. Bernasconi,et al.  Raman spectra of cubic and amorphous Ge 2 Sb 2 Te 5 from first principles , 2011 .

[43]  Matthias Krack,et al.  Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.

[44]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[45]  S. Y. Kim,et al.  Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films , 2000 .

[46]  H. Horii,et al.  Ab initio study on influence of dopants on crystalline and amorphous Ge2Sb2Te5 , 2011 .

[47]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[48]  Luping P. Shi,et al.  Dependence of the properties of phase change random access memory on nitrogen doping concentration in Ge2Sb2Te5 , 2010 .

[49]  Simone Raoux,et al.  Crystallization dynamics of nitrogen-doped Ge2Sb2Te5 , 2009 .

[50]  First principles study of the optical contrast in phase change materials. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Marius Lewerenz,et al.  High Performance Computing in Chemistry , 1998 .

[52]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[53]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[54]  M. Müser Elementary considerations on the local symmetry in optoelectronic materials and their phase change behavior , 2010 .

[55]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[56]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[57]  K. Jacobsen,et al.  Partly occupied Wannier functions. , 2004, Physical review letters.

[58]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[59]  M Bernasconi,et al.  Unravelling the mechanism of pressure induced amorphization of phase change materials. , 2009, Physical review letters.