Modelling of graphene Q-switched Tm lasers

Abstract We report on a model of diode-pumped Thulium lasers passively Q-switched by a graphene saturable absorber applicable also for any other “fast” saturable absorber. It reasonably predicts the dependence of the pulse duration, pulse energy and pulse repetition frequency on the absorbed power. The model is applied in the present work for a Tm: KLuW microchip laser passively Q-switched with a multi-layer graphene saturable absorber. The laser generates ~1 W at 1926 nm with a slope efficiency of 39%. Stable 190 ns /4.1 μJ pulses are achieved at a pulse repetition frequency of 260 kHz. The potential of graphene for the generation of few-ns pulses at ~2 µm is discussed.

[1]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[2]  T. Mocek,et al.  Graphene Q-Switched Compact Yb:YAG Laser , 2015, IEEE Photonics Journal.

[3]  Xavier Mateos,et al.  Tm:KLu(WO(4))(2) microchip laser Q-switched by a graphene-based saturable absorber. , 2015, Optics express.

[4]  Zhiyi Wei,et al.  Graphene on SiC as a Q-switcher for a 2 μm laser. , 2012, Optics letters.

[5]  U. Griebner,et al.  Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a graphene-based saturable absorber , 2016 .

[6]  Zhenhua Ni,et al.  Monolayer graphene as a saturable absorber in a mode-locked laser , 2010, 1007.2243.

[7]  Xavier Mateos,et al.  Diode-pumped microchip Tm:KLu(WO₄)₂ laser with more than 3 W of output power. , 2014, Optics letters.

[8]  Xavier Mateos,et al.  Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber. , 2015, Optics letters.

[9]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[10]  Xavier Mateos,et al.  Thin disk Tm-laser based on highly doped Tm:KLu(WO4)2/KLu(WO4)2 epitaxy , 2010 .

[11]  Tze Chien Sum,et al.  The Physics of ultrafast saturable absorption in graphene. , 2010, Optics express.

[12]  Zhengqian Luo,et al.  High-energy passively Q-switched 2 μm Tm(3+)-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. , 2013, Optics express.

[13]  Markus Pollnau,et al.  Stochastic Model of Energy-Transfer Processes Among Rare-Earth Ions. Example of Al2O3:Tm3+ , 2016 .

[14]  Mauro Tonelli,et al.  Compact passively Q-switched diode-pumped Tm:LiLuF4 laser with 1.26 mJ output energy. , 2012, Optics letters.

[15]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[16]  Xavier Mateos,et al.  Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes , 2016 .

[17]  Alexander M. Malyarevich,et al.  Compact passively Q-switched diode-pumped Tm:KY(WO4)2 laser with 8 ns/30 μJ pulses , 2012 .

[18]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[19]  Liejia Qian,et al.  Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength [Invited] , 2012 .

[20]  Hyeonsik Cheong,et al.  Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. , 2011, Nano letters.

[21]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[22]  J. Zayhowski,et al.  Diode-pumped passively Q-switched picosecond microchip lasers. , 1994, Optics letters.

[23]  H. Haus Parameter ranges for CW passive mode locking , 1976 .

[24]  M. Pollnau,et al.  Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.

[25]  U. Griebner,et al.  MoS 2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers , 2016 .

[26]  M. Aguiló,et al.  Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy , 2007 .

[27]  Xavier Mateos,et al.  Passively Q-switched Tm:YLF laser. , 2012, Optics letters.

[28]  D. Shepherd,et al.  A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers , 2005, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005..

[29]  Xavier Mateos,et al.  Passive Q-switching of the diode pumped Tm3+:KLu(WO4)2 laser near 2-μm with Cr2+:ZnS saturable absorbers. , 2012, Optics express.

[30]  Y. Yang,et al.  Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers. , 2013, Optics express.

[31]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[32]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[33]  Yonggang Wang,et al.  2 μm passive Q-switched mode-locked Tm3+:YAP laser with single-walled carbon nanotube absorber , 2012 .

[34]  Y. Wang,et al.  Passive Q-switching of microchip lasers based on Ho:YAG ceramics. , 2016, Applied optics.

[35]  A. E. Troshin,et al.  Spectroscopy and laser properties of Tm3+:KY(WO4)2 crystal , 2007 .