Approximate Bayesian computation for estimating rate constants in biochemical reaction systems
暂无分享,去创建一个
[1] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[2] D. Wilkinson,et al. Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation , 2005, Biometrics.
[3] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[4] Linda R. Petzold,et al. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems , 2012, BMC Bioinformatics.
[5] Xiaohui Xie,et al. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent , 2010, BMC Systems Biology.
[6] Darren J. Wilkinson,et al. Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..
[7] Chris A. Glasbey,et al. A latent Gaussian model for compositional data with zeros , 2008 .
[8] S. Tavaré,et al. Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.
[9] David Welch,et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.
[10] D. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .
[11] J. Arnold,et al. An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[12] J Timmer,et al. Parameter estimation in stochastic biochemical reactions. , 2006, Systems biology.
[13] Choujun Zhan,et al. Parameter estimation in systems biology models using spline approximation , 2011, BMC Systems Biology.
[14] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[15] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[16] Feng-Sheng Wang,et al. Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..
[17] Kevin R. Thornton,et al. Approximate Bayesian Inference Reveals Evidence for a Recent, Severe Bottleneck in a Netherlands Population of Drosophila melanogaster , 2006, Genetics.
[18] Masaru Tomita,et al. Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..
[19] A. Arkin,et al. It's a noisy business! Genetic regulation at the nanomolar scale. , 1999, Trends in genetics : TIG.
[20] Maksat Ashyraliyev,et al. Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.
[21] Junbin Gao,et al. Simulated maximum likelihood method for estimating kinetic rates in gene expression , 2007, Bioinform..
[22] Andrew R. Francis,et al. Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.