The potential for unifying global‐scale satellite measurements of ground displacements using radio telescopes

The expansion of globally consistent satellite‐radar imagery presents new opportunities to measure Earth‐surface displacements on intercontinental scales. Yet global applications, including a complete assessment of the land contribution to relative sea‐level rise, first demand new solutions to unify relative satellite‐radar observations in a geocentric reference frame. The international network of Very Long Baseline Interferometry telescopes provides an existing, yet unexploited, link to unify satellite‐radar measurements on a global scale. Proof‐of‐concept experiments reveal the suitability of these instruments as high‐amplitude reflectors for satellite radar and thus provide direct connections to a globally consistent reference frame. Automated tracking of radar satellites is easily integrated into telescope operations alongside ongoing schedules for geodesy and astrometry. Utilizing existing telescopes in this way completely avoids the need for additional geodetic infrastructure or ground surveys and is ready to implement immediately across the telescope network as a first step toward using satellite radar on a global scale.

[1]  Nigel T. Penna,et al.  Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion , 2017, Sensors.

[2]  Thomas Fuhrmann Combination of GNSS and InSAR for Future Australian Datums , 2018 .

[3]  John W. Dawson,et al.  Indirect approach to invariant point determination for SLR and VLBI systems: an assessment , 2007 .

[4]  D. Schmidt Time-dependent land uplift and subsidence in the Santa Clara Valley , 2003 .

[5]  Michael Lösler,et al.  Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting , 2016, Journal of Geodesy.

[6]  L. Gurvits,et al.  Probing the gravitational redshift with an Earth-orbiting satellite , 2017, Physics Letters A.

[7]  Anthony Freeman,et al.  SAR calibration: an overview , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  Christopher S. Jacobs,et al.  Astrometry and geodesy with radio interferometry: experiments, models, results , 1998 .

[9]  Rowena B. Lohman,et al.  Constraints on surface deformation in the Seattle, WA, urban corridor from satellite radar interferometry time-series analysis , 2008 .

[10]  Lucia Plank,et al.  VLBI observations of GNSS-satellites: from scheduling to analysis , 2017, Journal of Geodesy.

[11]  Fabio Rocca,et al.  Submillimeter Accuracy of InSAR Time Series: Experimental Validation , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Felipe Pedreros,et al.  The most remote point method for the site selection of the future GGOS network , 2014, Journal of Geodesy.

[13]  C. Mann,et al.  A Practical Treatise on Diseases of the Skin , 1889, Atlanta Medical and Surgical Journal (1884).

[14]  Kenneth W. Hudnut,et al.  Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California , 1998 .

[15]  Malcolm Davidson,et al.  GMES Sentinel-1 mission , 2012 .

[16]  C. Rieck,et al.  A gravitational telescope deformation model for geodetic VLBI , 2018, Journal of Geodesy.

[17]  Harald Schuh,et al.  VLBI2010: Next generation VLBI system for geodesy and astrometry , 2012 .

[18]  H. Plag,et al.  Global geodetic observing system : meeting the requirements of a global society on a changing planet in 2020 , 2009 .

[19]  S. J. Tingay,et al.  The AuScope geodetic VLBI array , 2013, Journal of Geodesy.

[20]  A. Zakharov,et al.  On the stability of large antennas as calibration targets , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[21]  M. Rothacher,et al.  The Global Geodetic Observing System , 2007 .

[22]  Ramon F. Hanssen,et al.  High-precision positioning of radar scatterers , 2016, Journal of Geodesy.

[23]  Jing Sun,et al.  Observing APOD with the AuScope VLBI Array , 2018, Sensors.

[24]  Marcello de Michele,et al.  Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? , 2013 .

[25]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[26]  Use of radio telescopes or satellite Earth station antennas as ultra-high scattering cross-section calibration targets for spaceborne remote sensing radars , 1983 .

[27]  C. E. Jones,et al.  Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA) , 2017, Scientific Reports.

[28]  Matthew C. Garthwaite,et al.  On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR , 2017, Remote. Sens..

[29]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[30]  Luca Vittuari,et al.  Surveying co-located space-geodetic instruments for ITRF computation , 2004 .

[31]  C.G.M. van 't Klooster About ground-station antennas as ‘radar target’ for P-Band synthetic aperture radars in space , 2011 .

[32]  P. J. Meadows The Use of Ground Receiving Stations for ERS SAR Quality Assessment , 2000 .

[33]  Marcello de Michele,et al.  High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement , 2013 .

[34]  Ramon F. Hanssen,et al.  On the Use of Transponders as Coherent Radar Targets for SAR Interferometry , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Cecil,et al.  Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar , 2012 .

[36]  Harald Schuh,et al.  VLBI: A fascinating technique for geodesy and astrometry , 2012 .

[37]  A. Cazenave,et al.  Sea-Level Rise and Its Impact on Coastal Zones , 2010, Science.

[38]  Lucia McCallum,et al.  Automated and dynamic scheduling for geodetic VLBI - A simulation study for AuScope and global networks , 2017 .

[39]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[40]  Ramon F. Hanssen,et al.  InSAR datum connection using GNSS-augmented radar transponders , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[41]  Geoffrey Blewitt,et al.  A geodetic plate motion and Global Strain Rate Model , 2014 .

[42]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[43]  Y.-L. Desnos Working Group on Calibration and Validation , 2003 .

[44]  Axel Nothnagel,et al.  International VLBI Service for Geodesy and Astrometry , 2017, Journal of Geodesy.

[45]  Ryan Lloyd,et al.  Constant strain accumulation rate between major earthquakes on the North Anatolian Fault , 2018, Nature Communications.

[46]  Michael Lösler,et al.  Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory , 2013, Journal of Geodesy.