Stability of perovskite solar cells

Abstract The performance of perovskite solar cells has increased at an unprecedented rate, with efficiencies currently exceeding 20%. This technology is particularly promising, as it is compatible with cheap solution processing. For a thin-film solar product to be commercially viable, it must pass the IEC 61646 testing standards, regarding the environmental stability. Currently, the poor stability of perovskite solar cells is a barrier to commercialisation. The main issue causing this problem is the instability of the perovskite layer when in contact with moisture; however, it is important to explore stability problems with the other layers and interfaces within the device. The stability issues discussed in this review highlight the need to view the device as a whole system, due to the interdependent relationships between the layers, including: the perovskite absorber, electron transport layers, hole transport layers, other buffer layers and the electrodes. We also discuss other issues pertaining to device stability, such as measurement-induced hysteresis and the requirement for standard testing protocols. For perovskite solar cells to achieve the required stability, future research must focus on improving the intrinsic stability of the perovskite absorber layer, carefully designing the device geometry, and finding durable encapsulant materials, which seal the device from moisture.

[1]  F. Krebs,et al.  Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules , 2012 .

[2]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[3]  Jin He,et al.  Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method , 2015, Scientific Reports.

[4]  Carl Renz,et al.  Zur Photochemie der Bleiverbindungen , 1921 .

[5]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[6]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[7]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[8]  Miaoqiang Lyu,et al.  Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. , 2015, Chemistry.

[9]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[10]  Qingwen Li,et al.  Wearable Double‐Twisted Fibrous Perovskite Solar Cell , 2015, Advanced materials.

[11]  Yongfang Li,et al.  Single‐Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency , 2015, Advanced materials.

[12]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[13]  Hong Zhang,et al.  Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells , 2013 .

[14]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[15]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[16]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[17]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[18]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[19]  Yongli Gao,et al.  Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing , 2014 .

[20]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[21]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[22]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[23]  Markus Hösel,et al.  Comparison of Fast Roll‐to‐Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells , 2013 .

[24]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[25]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[26]  Joop Schoonman,et al.  Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem , 2015 .

[27]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[28]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[29]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[30]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[31]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[32]  Mikkel Jørgensen,et al.  Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture , 2014 .

[33]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[34]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[35]  Yong Qiu,et al.  Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination , 2014 .

[36]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[37]  Qingfeng Dong,et al.  Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells , 2015 .

[38]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[39]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[40]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[41]  J W Mellor,et al.  A comprehensive treatise on inorganic and theoretical chemistry vol.VIII N, Cl , 1922 .

[42]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[43]  Frederik C. Krebs,et al.  Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodes , 2015 .

[44]  Mikkel Jørgensen,et al.  25th Anniversary Article: Rise to Power – OPV‐Based Solar Parks , 2014, Advanced materials.

[45]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[46]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[47]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[48]  T. Miyasaka,et al.  Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .

[49]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[50]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[51]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[52]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[53]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[54]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[55]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[56]  Thomas M. Brown,et al.  Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability , 2015 .

[57]  H. L. Wells On the caesium- and the potassium-lead halides , 1893, American Journal of Science.

[58]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[59]  C. Osterwald,et al.  Degradation analysis of weathered crystalline-silicon PV modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[60]  Y. Qi,et al.  Perovskite Solar Cells: Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes (Adv. Mater. Interfaces 13/2015) , 2015, Energy Materials.

[61]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[62]  Suren A. Gevorgyan,et al.  Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h , 2013 .

[63]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[64]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[65]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[66]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[67]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[68]  M. McGehee,et al.  Minimal Long-Term Intrinsic Degradation Observed in a Polymer Solar Cell Illuminated in an Oxygen-Free Environment , 2015 .

[69]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[70]  M. Grätzel,et al.  Dye-sensitized solar cells: A brief overview , 2011 .

[71]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[72]  R. Scheer,et al.  Monitoring the Phase Formation of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction. , 2014, The journal of physical chemistry letters.

[73]  Tomas Leijtens,et al.  Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. , 2014, ACS nano.

[74]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[75]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[76]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[77]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[78]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[79]  Mikkel Jørgensen,et al.  All printed transparent electrodes through an electrical switching mechanism: A convincing alternative to indium-tin-oxide, silver and vacuum , 2012 .

[80]  D. Mitzi,et al.  Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor , 2015 .

[81]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[82]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[83]  Mikkel Jørgensen,et al.  Carbon: The Ultimate Electrode Choice for Widely Distributed Polymer Solar Cells , 2014 .

[84]  Seeram Ramakrishna,et al.  Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO3 hole-transport layer. , 2013, Physical chemistry chemical physics : PCCP.

[85]  Dane W. deQuilettes,et al.  Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. , 2015, The journal of physical chemistry letters.

[86]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[87]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[88]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[89]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[90]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[91]  Sandeep Kumar Pathak,et al.  Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2 , 2014 .

[92]  Federico Bella,et al.  Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices , 2015 .

[93]  L. Etgar,et al.  Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells , 2015 .

[94]  S. Ramakrishna,et al.  Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering. , 2013, Physical chemistry chemical physics : PCCP.

[95]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[96]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[97]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[98]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[99]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[100]  Bo Qu,et al.  A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. , 2014, Chemical communications.

[101]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[102]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[103]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[104]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[105]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[106]  M. Grätzel Dye-sensitized solar cells , 2003 .

[107]  Dimitrios Raptis,et al.  Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules , 2015 .

[108]  Kai Zhu,et al.  Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells , 2015 .

[109]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[110]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[111]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[112]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[113]  C. Yuan,et al.  Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions. , 2015, ACS applied materials & interfaces.

[114]  Yanhong Luo,et al.  Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells , 2015 .

[115]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[116]  T. Miyasaka,et al.  Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2) , 2006 .

[117]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[118]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[119]  Husam N. Alshareef,et al.  Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells , 2015 .

[120]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[121]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[122]  Markus Hösel,et al.  Large scale deployment of polymer solar cells on land, on sea and in the air , 2014 .

[123]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[124]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[125]  J. Durrant,et al.  Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns , 2014, Advanced materials.