THE CONTRIBUTION OF STARBURSTS AND NORMAL GALAXIES TO INFRARED LUMINOSITY FUNCTIONS AT z < 2

We present a parameter-less approach to predict the shape of the infrared (IR) luminosity function (LF) at redshifts z < 2. It requires no tuning and relies on only three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate (sSFR) of main-sequence galaxies, and (3) the double-Gaussian decomposition of the sSFR-distribution at fixed stellar mass into a contribution (assumed redshift- and mass-invariant) from main-sequence and starburst activity. This self-consistent and simple framework provides a powerful tool for predicting cosmological observables: observed IR LFs are successfully matched at all z < 2, suggesting a constant or only weakly redshift-dependent contribution (8-14%) of starbursts to the star formation rate density. We separate the contributions of main-sequence and starburst activity to the global IR LF at all redshifts. The luminosity threshold above which the starburst component dominates the IR LF rises from log(LIR/Lsun) = 11.4 to 12.8 over 0 < z < 2, reflecting our assumed (1+z)^2.8-evolution of sSFR in main-sequence galaxies.

[1]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[2]  Star formation and dust obscuration at z≈2: galaxies at the dawn of downsizing , 2009, 0905.1674.

[3]  E. Gawiser,et al.  THE EVOLUTION OF THE SPECIFIC STAR FORMATION RATE OF MASSIVE GALAXIES TO z ∼ 1.8 IN THE EXTENDED CHANDRA DEEP FIELD SOUTH , 2008, 0809.1426.

[4]  A. Cimatti,et al.  PEP: First Herschel probe of dusty galaxy evolution up to z ~ 3 , 2010, 1005.1473.

[5]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[6]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[7]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[8]  David Elbaz,et al.  Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts , 2009, 0901.3783.

[9]  D. Elbaz,et al.  DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS , 2010, 1003.3889.

[10]  M. Kitzbichler,et al.  A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers , 2008, 0804.1965.

[11]  Daniel H. McIntosh,et al.  A First Estimate of the Baryonic Mass Function of Galaxies , 2003, astro-ph/0301616.

[12]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[13]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[14]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[15]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[16]  S. Serjeant,et al.  Luminosity functions of local infrared galaxies with AKARI: implications for the cosmic star formation history and AGN evolution , 2010, 1008.0859.

[17]  O. Ilbert,et al.  NO EVOLUTION IN THE IR–RADIO RELATION FOR IR-LUMINOUS GALAXIES AT z < 2 IN THE COSMOS FIELD , 2010, 1003.4271.

[18]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[19]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[20]  P. Hopkins,et al.  Mergers, active galactic nuclei and ‘normal’ galaxies: contributions to the distribution of star formation rates and infrared luminosity functions , 2009, 0911.1131.

[21]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[22]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[23]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[24]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[25]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[26]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[27]  Star formation efficiency in galaxy interactions and mergers: a statistical study , 2007, astro-ph/0703212.

[28]  J. Surace,et al.  The IRAS Revised Bright Galaxy Sample , 2003, astro-ph/0306263.

[29]  A long-wavelength view on galaxy evolution from deep surveys by the Infrared Space Observatory , 2001, astro-ph/0108292.

[30]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[31]  Asantha Cooray,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[32]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[33]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[34]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[35]  D.Lutz,et al.  A study of the gas–star formation relation over cosmic time , 2010 .

[36]  Carnegie,et al.  The star formation rate distribution function of the local Universe , 2011, 1104.0929.

[37]  E. Bell,et al.  Star Formation and the Growth of Stellar Mass , 2007, 0704.3077.

[38]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[39]  A. R. Rao,et al.  OSSE and RXTE Observations of GRS 1915+105: Evidence for Nonthermal Comptonization , 2001, astro-ph/0104054.

[40]  R. Bender,et al.  THE DEEP SWIRE FIELD. IV. FIRST PROPERTIES OF THE SUB-mJy GALAXY POPULATION: REDSHIFT DISTRIBUTION, AGN ACTIVITY, AND STAR FORMATION , 2010, 1003.4734.

[41]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[42]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[43]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[44]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[45]  M. Scodeggio,et al.  THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY , 2008, 0808.0493.

[46]  Guilaine Lagache,et al.  Modeling the evolution of infrared galaxies: a parametric backward evolution model , 2010, 1010.1150.