Balancing Population- and Individual-Level Adaptation in Changing Environments

This article examines the interdependency of population-level adaptation (evolution) and individual-level adaptation (learning). More specifically, we assume a trade-off between the two means of adaptation, that is, a higher individual-level adaptation can only be achieved with a reduced population level adaptation and vice versa. This trade-off is apparent in computational evolutionary systems, and there is also evidence that it exists in nature. As we show, despite this considered trade-off, there exist environments in which a combined adaptation scheme is optimal. Furthermore, we demonstrate that the optimal adaptive behavior produced by a particular distribution of population- and individual-level adaptation depends on the environmental dynamics. Finally, we verify that the optimal balance (i.e., an optimal learning effort) can emerge from evolution when there is a trade-off between reproduction and lifetime.

[1]  Colm O'Riordan,et al.  Increasing Population Diversity Through Cultural Learning , 2006, Adapt. Behav..

[2]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[3]  Michael Lachmann,et al.  Quasispecies Made Simple , 2005, PLoS Comput. Biol..

[4]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[5]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[6]  R. Routledge,et al.  Diversity indices: which ones are admissible? , 1979, Journal of theoretical biology.

[7]  Peter Calow,et al.  Physiological ecology of animals , 1986 .

[8]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[9]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[10]  Kenneth A. De Jong,et al.  Measurement of Population Diversity , 2001, Artificial Evolution.

[11]  Christian Igel,et al.  Balancing Learning And Evolution , 2002, GECCO.

[12]  E. H. Simpson Measurement of Diversity , 1949, Nature.

[13]  J. B. S. Haldane,et al.  The Effect of Variation of Fitness , 1937, The American Naturalist.

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[16]  Dario Floreano,et al.  Measures of Diversity for Populations and Distances Between Individuals with Highly Reorganizable Genomes , 2004, Evolutionary Computation.

[17]  Lauren Ancel Meyers,et al.  Fighting change with change: adaptive variation in an uncertain world , 2002 .

[18]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Bernhard Sendhoff,et al.  On the Adaptive Disadvantage of Lamarckianism in Rapidly Changing Environments , 2007, ECAL.

[20]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[21]  Carlos Alberto Conceição António,et al.  Self-adaptation in Genetic Algorithms applied to structural optimization , 2008 .

[22]  Bernhard Sendhoff,et al.  The Influence of Learning on Evolution: A Mathematical Framework , 2009, Artificial Life.

[23]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[24]  Anne E Magurran,et al.  Biological diversity , 2005, Current Biology.

[25]  B. Sendhoff,et al.  Influence of Plasticity and Learning on Evolution under Directional Selection , 2007, The American Naturalist.

[26]  Jürgen Branke,et al.  On the Influence of Phenotype Plasticity on Genotype Diversity , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[27]  E. Borenstein,et al.  The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes , 2006, Journal of evolutionary biology.

[28]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[29]  R. Levins Evolution in Changing Environments , 1968 .

[30]  Colm O'Riordan,et al.  Measuring Diversity in Populations Employing Cultural Learning in Dynamic Environments , 2005, ECAL.

[31]  H. Tissenbaum,et al.  Reproduction and longevity: secrets revealed by C. elegans. , 2007, Trends in cell biology.

[32]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[33]  T. Johnston Selective costs and benefits of in the evolution of learning , 1996 .

[34]  S. Stearns Trade-offs in life-history evolution , 1989 .

[35]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[36]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[37]  Caleb E. Finch,et al.  Longevity, senescence, and the genome , 1990 .

[38]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[39]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[40]  Jean Baptiste,et al.  Philosophie Zoologique: Ou, Exposition des Considérations Relatives à L'Histoire Naturelle des Animaux , 2011 .

[41]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[42]  W. Hart Adaptive global optimization with local search , 1994 .

[43]  Giles Mayley Guiding or Hiding: Explorations into the Effects of Learning on the Rate of Evolution , 1997 .

[44]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[45]  David J. Earl,et al.  Evolvability is a selectable trait. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[47]  S. Risau-Gusman,et al.  A model for the emergence of adaptive subsystems , 2003, Bulletin of mathematical biology.

[48]  Uri Alon,et al.  Varying environments can speed up evolution , 2007, Proceedings of the National Academy of Sciences.

[49]  S. Hurlbert The Nonconcept of Species Diversity: A Critique and Alternative Parameters. , 1971, Ecology.

[50]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[51]  Shengxiang Yang,et al.  Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments , 2008, Evolutionary Computation.

[52]  G. Simpson THE BALDWIN EFFECT , 1953 .

[53]  Richard A. Watson,et al.  On Crossing Fitness Valleys with the Baldwin Effect , 2006 .