Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging.

Focusing on the use of nanophosphors for in vivo imaging and diagnosis applications, we used thermally stimulated luminescence (TSL) measurements to study the influence of trivalent lanthanide Ln(3+) (Ln = Dy, Pr, Ce, Nd) electron traps on the optical properties of Mn(2+)-doped diopside-based persistent luminescence nanoparticles. This work reveals that Pr(3+) is the most suitable Ln(3+) electron trap in the diopside lattice, providing optimal trap depth for room temperature afterglow and resulting in the most intense luminescence decay curve after X-ray irradiation. This luminescence dependency toward the electron trap is maintained through additional doping with Eu(2+), allowing UV-light excitation, critical for bioimaging applications in living animals. We finally identify a novel composition (CaMgSi(2)O(6):Eu(2+),Mn(2+),Pr(3+)) for in vivo imaging, displaying a strong near-infrared afterglow centered on 685 nm, and present evidence that intravenous injection of such persistent luminescence nanoparticles in mice allows not only improved but highly sensitive detection through living tissues.

[1]  A novel inorganic scintillator: Lu/sub 2/Si/sub 2/O/sub 7/:Ce/sup 3+/ (LPS) , 1999 .

[2]  B. Viana,et al.  Red persistent luminescent silicate nanoparticles , 2010 .

[3]  B. Viana,et al.  Red long-lasting luminescence in clinoenstatite , 2009 .

[4]  J. Boilot,et al.  New Insights into Size Effects in Luminescent Oxide Nanocrystals , 2009 .

[5]  Quanmao Yu,et al.  Roles of doping ions in persistent luminescence of SrAl2O4:Eu2+, RE3+ phosphors , 2007 .

[6]  Didier Gourier,et al.  Nanoprobes with near-infrared persistent luminescence for in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[7]  Indrajit Roy,et al.  In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. , 2010, ACS nano.

[8]  P. Dorenbos,et al.  Lanthanide level location in transition metal complex compounds , 2010 .

[9]  Chengtie Wu,et al.  Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[10]  B. Viana,et al.  Luminescence properties of YVO4:Ln (Ln=Nd, Yb, and Yb–Er) nanoparticles , 2003 .

[11]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[12]  Thomas Maldiney,et al.  Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. , 2011, ACS nano.

[13]  S. Tsutsumi,et al.  Study of diopside ceramics for biomaterials , 1999, Journal of materials science. Materials in medicine.

[14]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[15]  P. Dorenbos,et al.  High efficiency of lutetium silicate scintillators, Ce-doped LPS and LYSO crystals , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[16]  B. Viana,et al.  Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials , 2008 .

[17]  P. Dorenbos,et al.  Designing a Red Persistent Luminescence Phosphor: The Example of YPO4:Pr3+,Ln3+ (Ln = Nd, Er, Ho, Dy) , 2011 .

[18]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[19]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.