Single-query quantum algorithms for symmetric problems
暂无分享,去创建一个
David A. Meyer | Daniel Copeland | James Pommersheim | Orest Bucicovschi | D. Meyer | James Pommersheim | Orest Bucicovschi | D. Copeland
[1] M. Izutsu,et al. Quantum channels showing superadditivity in classical capacity , 1998, quant-ph/9801012.
[2] Ronald de Wolf,et al. Quantum lower bounds by polynomials , 2001, JACM.
[3] Yuval Roichman. Decomposition of the conjugacy representation of the symmetric groups , 1997 .
[4] D. Passman,et al. Character Theory of Finite Groups , 2010 .
[5] Carl W. Helstrom,et al. Detection Theory and Quantum Mechanics , 1967, Inf. Control..
[6] Avital Frumkin. Theorem about the conjugacy representation ofSn , 1986 .
[7] Wim van Dam,et al. Quantum Oracle Interrogation: Getting All Information for Almost Half the Price , 1999 .
[8] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[9] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] William K. Wootters,et al. A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .
[11] Umesh V. Vazirani,et al. Quantum complexity theory , 1993, STOC.
[12] M. Lax,et al. On optimal quantum receivers for digital signal detection , 1970 .
[13] R. Bhatia. Positive Definite Matrices , 2007 .
[14] K. L. Fields,et al. On the conjugating representation of a finite group , 1975 .
[15] Edward Formanek. The conjugation representation and fusionless extensions , 1971 .
[16] Yonina C. Eldar,et al. Optimal detection of symmetric mixed quantum states , 2004, IEEE Transactions on Information Theory.
[17] David A. Meyer,et al. Multi-query Quantum Sums , 2011, TQC.
[18] Yonina C. Eldar,et al. On quantum detection and the square-root measurement , 2001, IEEE Trans. Inf. Theory.
[19] David A. Meyer,et al. Single query learning from abelian and non-abelian Hamming distance oracles , 2009, Chic. J. Theor. Comput. Sci..