Computing exponential moments of the discrete maximum of a Lévy process and lookback options

We present a fast and accurate method to compute exponential moments of the discretely observed maximum of a Lévy process. The method involves a sequential evaluation of Hilbert transforms of expressions involving the characteristic function of the (Esscher-transformed) Lévy process. It can be discretized with exponentially decaying errors of the form O(exp (−aMb)) for some a,b>0, where M is the number of discrete points used to compute the Hilbert transform. The discrete approximation can be efficiently implemented using the Toeplitz matrix–vector multiplication algorithm based on the fast Fourier transform, with total computational cost of O(NMlog (M)), where N is the number of observations of the maximum. The method is applied to the valuation of European-style discretely monitored floating strike, fixed strike, forward start and partial lookback options (both newly written and seasoned) in exponential Lévy models.

[1]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[2]  D. Madan,et al.  1option Pricing with V. G. Martingale Components , 1991 .

[3]  Mark Broadie,et al.  Connecting discrete and continuous path-dependent options , 1999, Finance Stochastics.

[4]  S. Kou,et al.  Numerical pricing of discrete barrier and lookback options via Laplace transforms , 2004 .

[5]  S. H. Babbs Binomial valuation of lookback options , 2000 .

[6]  A. Eydeland A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .

[7]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[8]  Alex W. H. Chan Merton, Robert C. , 2010 .

[9]  J. Andreasen The pricing of discretely sampled Asian and lookback options: a change of numeraire approach , 1998 .

[10]  M. Goldman,et al.  Path Dependent Options: "Buy at the Low, Sell at the High" , 1979 .

[11]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[12]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[13]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[14]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[15]  A. Conze,et al.  Path Dependent Options: The Case of Lookback Options , 1991 .

[16]  Vadim Linetsky,et al.  Lookback options and diffusion hitting times: A spectral expansion approach , 2004, Finance Stochastics.

[17]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[18]  Fa Rid,et al.  Random walk duality and the valuation of discrete lookback options , 1998 .

[19]  Y. Yamamoto,et al.  A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options , 2005, Oper. Res..

[20]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[21]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[22]  R. Heynen,et al.  Lookback options with discrete and partial monitoring of the underlying price , 1995 .

[23]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[24]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[25]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[26]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .

[27]  E. Eberlein,et al.  Equivalence of floating and fixed strike Asian and lookback options , 2005 .

[28]  A. Novikov,et al.  On a new approach to calculating expectations for option pricing , 2002, Journal of Applied Probability.

[29]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[30]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[31]  T. Vorst,et al.  Currency lookback options and observation frequency: A binomial approach , 1997 .

[32]  M. Yor,et al.  Exotic options and L evy processes , 2002 .

[33]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[34]  D. C. Champeney A handbook of Fourier theorems , 1987 .

[35]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[36]  Kai Wang Ng,et al.  Pricing Discrete Barrier and Hindsight Options with the Tridiagonal Probability Algorithm , 2001, Manag. Sci..

[37]  S. Kou Chapter 8 Discrete Barrier and Lookback Options , 2007 .

[38]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[39]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[40]  P. Protter Stochastic integration and differential equations , 1990 .

[41]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[42]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[43]  Roger Lee Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .

[44]  Dawn Hunter Discrete extrema of Brownian motion and pricing of exotic options , 2007 .

[45]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[46]  Peter W. Glynn,et al.  Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion , 1995 .

[47]  Yusaku Yamamoto Double-Exponential Fast Gauss Transform Algorithms for Pricing Discrete Lookback Options , 2005 .

[48]  Wim Schoutens,et al.  Exotic options under Lévy models: An overview , 2006 .