UCSF Chimera—A visualization system for exploratory research and analysis

The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large‐scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real‐world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 1605–1612, 2004

[1]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[2]  M. Yoder,et al.  The parallel β helix and other coiled folds , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  J. M. Diprose,et al.  The Core of Bluetongue Virus Binds Double-Stranded RNA , 2002, Journal of Virology.

[4]  Lauren Wood 技術解説 IEEE Internet Computing , 1999 .

[5]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[6]  Matthew L. Baker,et al.  Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus , 2001, Nature Structural Biology.

[7]  Tim J. P. Hubbard,et al.  SCOP database in 2002: refinements accommodate structural genomics , 2002, Nucleic Acids Res..

[8]  Amos Bairoch,et al.  PROSITE: A Documented Database Using Patterns and Profiles as Motif Descriptors , 2002, Briefings Bioinform..

[9]  Ashish B. Shah,et al.  Common Object Request Broker Architecture (CORBA) , 2015 .

[10]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[11]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[12]  C. M. Sperberg-McQueen,et al.  Extensible markup language , 1997 .

[13]  R Langridge,et al.  Conic: a fast renderer for space-filling molecules with shadows. , 1991, Journal of molecular graphics.

[14]  Philip M. Dean,et al.  Three-dimensional hydrogen-bond geometry and probability information from a crystal survey , 1996, J. Comput. Aided Mol. Des..

[15]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[16]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[17]  Conrad C. Huang,et al.  The MIDAS display system , 1988 .

[18]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[19]  D A Agard,et al.  IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. , 1996, Journal of structural biology.

[20]  D. Bacon,et al.  A fast algorithm for rendering space-filling molecule pictures , 1988 .

[21]  Conrad C. Huang,et al.  The Structure Superposition Database , 2003, Nucleic Acids Res..

[22]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[23]  C C Huang,et al.  Annotating PDB files with scene information. , 1995, Journal of molecular graphics.

[24]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[25]  R Langridge,et al.  Real-time color graphics in studies of molecular interactions. , 1981, Science.

[26]  W. Kabsch,et al.  Three-dimensional structure of p21 in the active conformation and analysis of an oncogenic mutant. , 1991, Environmental health perspectives.

[27]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[28]  M. Yoder,et al.  Structure of pectate lyase A: comparison to other isoforms. , 2002, Acta crystallographica. Section D, Biological crystallography.

[29]  J Badger,et al.  New features and enhancements in the X‐PLOR computer program , 1999, Proteins.

[30]  R. Pickersgill,et al.  The structure of Bacillus subtilis pectate lyase in complex with calcium , 1994, Nature Structural Biology.

[31]  I. Kuntz Structure-Based Strategies for Drug Design and Discovery , 1992, Science.

[32]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[33]  Andy Hopper,et al.  Virtual Network Computing , 1998, IEEE Internet Comput..

[34]  R. Altman,et al.  Characterizing the microenvironment surrounding protein sites , 1995, Protein science : a publication of the Protein Society.

[35]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[36]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[37]  M. Baker,et al.  Bridging the information gap: computational tools for intermediate resolution structure interpretation. , 2001, Journal of molecular biology.

[38]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[39]  Jonathan Grimes,et al.  The crystal structure of bluetongue virus VP7 , 1995, Nature.