Uninorms and nullnorms on the set of discrete fuzzy numbers

In this paper a method to extend discrete uninorms and nullnorms on the finite chain L = {0,...,n}, to uninorms and nullnorms defined on the set of discrete fuzzy numbers whose support is a set of consecutive natural numbers contained in L is presented. Some basic properties of discrete uninorms and nullnorms are preserved by this extension method and the structure of these kinds of aggregations is maintained too. Finally, we develop an application to obtain the group consensus opinion based on the extension of discrete uninorms and nullnorms.

[1]  Jaume Casasnovas,et al.  Weighted Means of Subjective Evaluations , 2012, Soft Computing in Humanities and Social Sciences.

[2]  Ronald R. Yager,et al.  Aggregation of ordinal information , 2007, Fuzzy Optim. Decis. Mak..

[3]  R. Yager Using importances in group preference aggregation to block strategic manipulation , 2002 .

[4]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[5]  Vicenç Torra,et al.  On aggregation operators for ordinal qualitative information , 2000, IEEE Trans. Fuzzy Syst..

[6]  Jaume Casasnovas,et al.  On the addition of discrete fuzzy numbers , 2006 .

[7]  Jaume Casasnovas,et al.  Lattice Properties of Discrete Fuzzy Numbers under Extended Min and Max , 2009, IFSA/EUSFLAT Conf..

[8]  Jaume Casasnovas,et al.  S-implications in the set of discrete fuzzy numbers , 2010, International Conference on Fuzzy Systems.

[9]  Joan Torrens,et al.  S-implications and R-implications on a finite chain , 2004, Kybernetika.

[10]  Bernard De Baets,et al.  Model implicators and their characterization , 1995 .

[11]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[12]  Francisco Herrera,et al.  A web based consensus support system for group decision making problems and incomplete preferences , 2010, Inf. Sci..

[13]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[14]  R. Mesiar,et al.  Aggregation Functions: Aggregation on ordinal scales , 2009 .

[15]  G. Mayor,et al.  t‐Operators and uninorms on a finite totally ordered set , 1999 .

[16]  Joan Torrens,et al.  On two types of discrete implications , 2005, Int. J. Approx. Reason..

[17]  Ronald R. Yager,et al.  Defending against strategic manipulation in uninorm-based multi-agent decision making , 2002, Eur. J. Oper. Res..

[18]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[19]  Jaume Casasnovas,et al.  Extension of discrete t-norms and t-conorms to discrete fuzzy numbers , 2011, Fuzzy Sets Syst..

[20]  Jaume Casasnovas,et al.  Maximum and Minimum of Discrete Fuzzy Numbers , 2007, CCIA.

[21]  William Voxman,et al.  Canonical representations of discrete fuzzy numbers , 2001, Fuzzy Sets Syst..

[22]  Radko Mesiar,et al.  Weighted ordinal means , 2007, Inf. Sci..

[23]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[24]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .