Extended convex hull

In this paper we address the problem of computing a minimal representation of the convex hull of the union of k H- polytopes in . Our method applies the reverse search algorithm to a shelling ordering of the facets of the convex hull. Efficient wrapping is done by projecting the polytopes onto the two-dimensional space and solving a linear program. The resulting algorithm is polynomial in the sizes of input and output under the general position assumption.

[1]  David Avis,et al.  A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra , 1992, Discret. Comput. Geom..

[2]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[3]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[4]  Alberto Bemporad,et al.  Convexity recognition of the union of polyhedra , 2001, Comput. Geom..

[5]  D. Avis,et al.  A basis enumeration algorithm for linear systems with geometric applications , 1991 .

[6]  K. G. Murty An Algorithm for Ranking All the Assignment in Order of Increasing Cost , 1968 .

[7]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[8]  Michele Conforti,et al.  On the Facial Structure of Independence System Polyhedra , 1988, Math. Oper. Res..

[9]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[10]  N. Amenta,et al.  Deformed products and maximal shadows of polytopes , 1996 .

[11]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[12]  David Bremner,et al.  Primal—Dual Methods for Vertex and Facet Enumeration , 1998, Discret. Comput. Geom..

[13]  Egon Balas On the convex hull of the union of certain polyhedra , 1988 .

[14]  Günter Rote Degenerate convex hulls in high dimensions without extra storage , 1992, SCG '92.

[15]  G. Adomian,et al.  An approach to steady-state solutions , 1992 .