MacWilliams Identities of Linear Codes with Respect to RT Metric over Mn>×s(F2[u, v]/uk, v2, uv>-vu>)
暂无分享,去创建一个
Maorong Ge | Minjia Shi | Jie Tang | Maorong Ge | Jie Tang
[1] Irfan Siap,et al. Codes over Galois rings with respect to the Rosenbloom-Tsfasman metric , 2007, J. Frankl. Inst..
[2] Irfan Siap. The Complete Weight Enumerator for Codes over Mn×s(Fq) , 2001, IMACC.
[3] I. Siap,et al. A MacWilliams Type Identity , 2002 .
[4] Irfan Siap,et al. On The Structure and Decoding of Linear Codes with Respect to the Rosenbloom-Tsfasman Metric , 2004 .
[5] Bappaditya Ghosh,et al. Cyclic codes over the ring $\mathbb{F}_p[u,v] / \langle u^k,v^2,uv-vu\rangle$ , 2015, 1508.07034.
[6] Irfan Siap,et al. The complete weight enumerator for codes over M n times s(R) , 2004, Appl. Math. Lett..
[7] Zhu Shi-xin. MacWilliams identities of linear codes over ring M_(n×s)(F_2+uF_2) with respect to the RT metric , 2008 .
[8] Yan Liu,et al. MacWilliams Identities of Linear Codes with Respect to RT Metric over Mn×s(Fl+vFl+v2Fl) , 2014, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..