Designing crystallization in phase-change materials for universal memory and neuro-inspired computing

The global demand for data storage and processing has increased exponentially in recent decades. To respond to this demand, research efforts have been devoted to the development of non-volatile memory and neuro-inspired computing technologies. Chalcogenide phase-change materials (PCMs) are leading candidates for such applications, and they have become technologically mature with recently released competitive products. In this Review, we focus on the mechanisms of the crystallization dynamics of PCMs by discussing structural and kinetic experiments, as well as ab initio atomistic modelling and materials design. Based on the knowledge at the atomistic level, we depict routes to improve the parameters of phase-change devices for universal memory. Moreover, we discuss the role of crystallization in enabling neuro-inspired computing using PCMs. Finally, we present an outlook for future opportunities of PCMs, including all-photonic memories and processors, flexible displays with nanopixel resolution and nanoscale switches and controllers.Chalcogenide phase-change materials (PCMs) are leading candidates for non-volatile memory and neuro-inspired computing devices. This Review focuses on the crystallization mechanisms of PCMs as well as the design principles to achieve PCMs with high switching speeds and good data retention, which will aid the development of PCM-based universal memory and neuro-inspired devices.

[1]  H. L. Lung,et al.  ALD-based confined PCM with a metallic liner toward unlimited endurance , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[2]  Matthias Rupp,et al.  Machine learning for quantum mechanics in a nutshell , 2015 .

[3]  F. Zeng,et al.  Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , 2014 .

[4]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[5]  Jan Schroers,et al.  Nanoscale size effects in crystallization of metallic glass nanorods , 2015, Nature Communications.

[6]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[7]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[8]  Yusuf Leblebici,et al.  Neuromorphic computing with multi-memristive synapses , 2017, Nature Communications.

[9]  H.-S. Philip Wong,et al.  Phase-Change Memory—Towards a Storage-Class Memory , 2017, IEEE Transactions on Electron Devices.

[10]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[11]  Matthias Wuttig,et al.  Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage , 2003 .

[12]  Matthias Wuttig,et al.  Mechanical stresses upon crystallization in phase change materials , 2001 .

[13]  Tobias Van Damme,et al.  Unraveling Crystal Growth in GeSb Phase-Change Films in between the Glass-Transition and Melting Temperatures , 2014 .

[14]  Xiangshui Miao,et al.  Increasing the Atomic Packing Efficiency of Phase‐Change Memory Glass to Reduce the Density Change upon Crystallization , 2018, Advanced Electronic Materials.

[15]  Matthias Wuttig,et al.  Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials. , 2016, Physical review letters.

[16]  Riccardo Mazzarello,et al.  Magnetic Contrast in Phase‐Change Materials Doped with Fe Impurities , 2012, Advanced materials.

[17]  S. Ovshinsky The Ovonic Cognitive Computer-A New Paradigm , 2004 .

[18]  Valerio Pruneri,et al.  Time-domain separation of optical properties from structural transitions in resonantly bonded materials. , 2014, Nature materials.

[19]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[20]  Y. X. Zheng,et al.  Structural signature and transition dynamics of Sb2Te3 melt upon fast cooling. , 2018, Physical chemistry chemical physics : PCCP.

[21]  Matthias Wuttig,et al.  Phase-change materials: Fast transformers. , 2012, Nature materials.

[22]  Ider Ronneberger,et al.  Crystallization Properties of the Ge2Sb2Te5 Phase‐Change Compound from Advanced Simulations , 2015 .

[23]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[24]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[25]  Michele Parrinello,et al.  Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials. , 2010, Physical review letters.

[26]  Tae Hoon Lee,et al.  Microscopic Mechanism of Doping‐Induced Kinetically Constrained Crystallization in Phase‐Change Materials , 2015, Advanced materials.

[27]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[28]  Jörg Behler,et al.  Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. , 2013, The journal of physical chemistry letters.

[29]  Young-Chang Joo,et al.  The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics , 2015 .

[30]  Kenneth F. Kelton,et al.  Nucleation in condensed matter : applications in materials and biology , 2010 .

[31]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[32]  Richard Dronskowski,et al.  LOBSTER: A tool to extract chemical bonding from plane‐wave based DFT , 2016, J. Comput. Chem..

[33]  David R. Reichman,et al.  Soft colloids make strong glasses , 2009, Nature.

[34]  Matthias Wuttig,et al.  Incipient Metals: Functional Materials with a Unique Bonding Mechanism , 2017, Advanced materials.

[35]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[36]  Matthias Wuttig,et al.  How fragility makes phase-change data storage robust: insights from ab initio simulations , 2014, Scientific Reports.

[37]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[38]  Richard Dronskowski,et al.  Analytic projection from plane‐wave and PAW wavefunctions and application to chemical‐bonding analysis in solids , 2013, J. Comput. Chem..

[39]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[40]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[41]  Shimeng Yu,et al.  Emerging Memory Technologies: Recent Trends and Prospects , 2016, IEEE Solid-State Circuits Magazine.

[42]  Songlin Feng,et al.  One order of magnitude faster phase change at reduced power in Ti-Sb-Te , 2014, Nature Communications.

[43]  Peining Li,et al.  Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material. , 2016, Nature materials.

[44]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[45]  Edgar Dutra Zanotto,et al.  Mechanisms and dynamics of crystal growth, viscous flow, and self-diffusion in silica glass , 2006 .

[46]  Richard Dronskowski,et al.  Density-functional theory guided advances in phase-change materials and memories , 2015 .

[47]  Luping Shi,et al.  Synthesis and Characteristics of a Phase‐Change Magnetic Material , 2008 .

[48]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[49]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[50]  Wei Zhang,et al.  Crystal growth of Ge2Sb2Te5 at high temperatures , 2018, MRS Communications.

[51]  Jonathan M. Skelton,et al.  Atomistic Origin of the Enhanced Crystallization Speed and n-Type Conductivity in Bi-doped Ge-Sb-Te Phase-Change Materials , 2014 .

[52]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[53]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[54]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[55]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[56]  Matthias Wuttig,et al.  A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials , 2017, Materials.

[57]  Simone Raoux,et al.  Crystallization dynamics of nitrogen-doped Ge2Sb2Te5 , 2009 .

[58]  Matthias Wuttig,et al.  Aging mechanisms in amorphous phase-change materials , 2015, Nature Communications.

[59]  Richard Dronskowski,et al.  Bonding nature of local structural motifs in amorphous GeTe. , 2014, Angewandte Chemie.

[60]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[61]  Matthias Krack,et al.  Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. , 2007, Physical review letters.

[62]  Alessandro Curioni,et al.  Structural origin of resistance drift in amorphous GeTe , 2016 .

[63]  A Hirata,et al.  Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials. , 2018, Physical review letters.

[64]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[65]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[66]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[67]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[68]  S.W. Nam,et al.  High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications , 2010, 2010 Symposium on VLSI Technology.

[69]  Marco Bernasconi,et al.  Breakdown of Stokes–Einstein relation in the supercooled liquid state of phase change materials , 2012, 1207.7269.

[70]  Does AI have a hardware problem? , 2018 .

[71]  Robert O. Jones,et al.  Crystallization processes in the phase change material Ge2Sb2Te5: Unbiased density functional/molecular dynamics simulations , 2016 .

[72]  D. Ielmini,et al.  Self-aligned nanotube-nanowire phase change memory. , 2013, Nano letters.

[73]  Wei Zhang,et al.  Single-element glass to record data , 2018, Nature Materials.

[74]  Lin F. Yang,et al.  Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 structure at room temperature. , 2012, Physical review letters.

[75]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[76]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[77]  J. J. Hauser Hopping conductivity in amorphous antimony , 1974 .

[78]  B. DeSalvo,et al.  Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices , 2013 .

[79]  Robert O. Jones,et al.  Simulation of crystallization in Ge 2 Sb 2 Te 5 : A memory effect in the canonical phase-change material , 2014 .

[80]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[81]  Alex Ming Shen,et al.  A Carbon Nanotube Synapse with Dynamic Logic and Learning , 2013, Advanced materials.

[82]  Harish Bhaskaran,et al.  Color Depth Modulation and Resolution in Phase‐Change Material Nanodisplays , 2016, Advanced materials.

[83]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[84]  F. Catalina,et al.  Ultrafast reversible phase change in GeSb films for erasable optical storage , 1992 .

[85]  Leon O. Chua How we predicted the memristor , 2018 .

[86]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[87]  H.-S. Philip Wong,et al.  Synthesis and Size-Dependent Crystallization of Colloidal Germanium Telluride , 2010 .

[88]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[89]  Ethan C. Ahn,et al.  Carbon nanomaterials for non-volatile memories , 2018 .

[90]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[91]  J Feldmann,et al.  Calculating with light using a chip-scale all-optical abacus , 2017, Nature Communications.

[92]  J. Akola,et al.  Speeding up crystallization , 2017, Science.

[93]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[94]  Stephen R. Elliott,et al.  Computer‐simulation design of new phase‐change memory materials , 2010 .

[95]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[96]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[97]  I. Kaban,et al.  Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover. , 2016, The Journal of chemical physics.

[98]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[99]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[100]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[101]  P. Ashwin,et al.  Phase‐change processors, memristors and memflectors , 2012 .

[102]  Noam Bernstein,et al.  Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.

[103]  Jörg Behler,et al.  Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. , 2014, The journal of physical chemistry. B.

[104]  Juan J de Pablo,et al.  Ultrastable glasses from in silico vapour deposition. , 2013, Nature materials.

[105]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[106]  Chunsen Liu,et al.  A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications , 2018, Nature Nanotechnology.

[107]  Wei Zhang,et al.  Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing , 2017, Science.

[108]  Michael B. Sullivan,et al.  Time-temperature-transformation and continuous-heating-transformation diagrams of GeSb2Te4 from nanosecond-long ab initio molecular dynamics simulations , 2016 .

[109]  Jörg Behler,et al.  Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe , 2015 .

[110]  H. Iwasaki,et al.  Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity , 1993 .

[111]  Alessandro Curioni,et al.  Reactive potential for the study of phase-change materials: GeTe , 2013 .

[112]  Carlo Massobrio,et al.  Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys , 2015 .

[113]  L. Chua Memristor-The missing circuit element , 1971 .

[114]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[115]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[116]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[117]  Klaus H. Behrndt,et al.  Formation of Amorphous Films , 1970 .

[118]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[119]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[120]  Eric Pop,et al.  Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. , 2015, Nano letters.

[121]  Xiang Shen,et al.  Unraveling the Crystallization Kinetics of Supercooled Liquid GeTe by Ultrafast Calorimetry , 2017 .

[122]  R. Service The brain chip. , 2014, Science.

[123]  A. L. Greer,et al.  New horizons for glass formation and stability. , 2015, Nature materials.

[124]  Matthias Wuttig,et al.  Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage , 2003 .

[125]  S. G. Bishop,et al.  Glassy Solid Observation of the Role of Subcritical Nuclei in Crystallization of a , 2012 .

[126]  Daniele Ielmini,et al.  Evidence for Non-Arrhenius Kinetics of Crystallization in Phase Change Memory Devices , 2013, IEEE Transactions on Electron Devices.

[127]  Bo Shen,et al.  Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory. , 2018, Nanoscale.

[128]  Volker L. Deringer,et al.  Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. , 2011, The journal of physical chemistry. A.

[129]  Yihong Wu,et al.  Fast phase transitions induced by picosecond electrical pulses on phase change memory cells , 2008 .

[130]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[131]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[132]  Heiner Giefers,et al.  Mixed-precision in-memory computing , 2017, Nature Electronics.

[133]  X. Miao,et al.  Associative Learning with Temporal Contiguity in a Memristive Circuit for Large‐Scale Neuromorphic Networks , 2015 .

[134]  Zhimei Sun,et al.  Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices , 2014 .

[135]  Jian Zhou,et al.  Yttrium-Doped Sb2Te3: A Promising Material for Phase-Change Memory. , 2016, ACS applied materials & interfaces.

[136]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[137]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[138]  A. V. Kolobov,et al.  Ge L3-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5 , 2014 .

[139]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[140]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[141]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[142]  Wei Zhang,et al.  Magnetic Properties of Crystalline and Amorphous Phase‐Change Materials Doped with 3d Impurities , 2012, Advanced materials.

[143]  J. Yang,et al.  Robust memristors based on layered two-dimensional materials , 2018, 1801.00530.

[144]  Daan Frenkel,et al.  Simulation of homogeneous crystal nucleation close to coexistence , 1996 .

[145]  Nian-Ke Chen,et al.  Phase‐Change Superlattice Materials toward Low Power Consumption and High Density Data Storage: Microscopic Picture, Working Principles, and Optimization , 2018, Advanced Functional Materials.

[146]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[147]  Pritish Narayanan,et al.  Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element , 2014, IEEE Transactions on Electron Devices.

[148]  Jörg Behler,et al.  Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires , 2017 .

[149]  gt hutilisateurs,et al.  IEEE International Electron Devices Meeting (IEDM) , 2016 .

[150]  Carlo Massobrio,et al.  Atomic-scale structure of the glassy Ge 2 Sb 2 Te 5 phase change material: A quantitative assessment via first-principles molecular dynamics , 2017 .

[151]  Desmond Loke,et al.  Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials. , 2015, ACS applied materials & interfaces.

[152]  Evangelos Eleftheriou,et al.  Projected phase-change memory devices , 2015, Nature Communications.

[153]  A. Pirovano,et al.  Electronic switching effect and phase-change transition in chalcogenide materials , 2004, IEEE Electron Device Letters.

[154]  Yuchao Yang,et al.  Probing memristive switching in nanoionic devices , 2018 .

[155]  C David Wright,et al.  Phase-change devices: Crystal-clear neuronal computing. , 2016, Nature nanotechnology.

[156]  Wei Zhang,et al.  Role of vacancies in metal-insulator transitions of crystalline phase-change materials. , 2012, Nature materials.

[157]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[158]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[159]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[160]  Manuel Le Gallo,et al.  Monatomic phase change memory , 2018, Nature Materials.

[161]  Matthias Wuttig,et al.  Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording , 2005 .

[162]  David Prendergast,et al.  Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitions , 2016 .

[163]  Qi Liu,et al.  Eliminating Negative‐SET Behavior by Suppressing Nanofilament Overgrowth in Cation‐Based Memory , 2016, Advanced materials.

[164]  K F Kelton,et al.  Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[165]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[166]  J. Behler First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. , 2017, Angewandte Chemie.

[167]  Noam Bernstein,et al.  Modeling the Phase-Change Memory Material, Ge2Sb2Te5, with a Machine-Learned Interatomic Potential. , 2018, The journal of physical chemistry. B.

[168]  E. Ma,et al.  Nature of atomic bonding and atomic structure in the phase-change Ge2Sb2Te5 glass. , 2009, Physical review letters.

[169]  Bin Zhang,et al.  Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material , 2016 .

[170]  Bart J. Kooi,et al.  Resolving Crystallization Kinetics of GeTe Phase-Change Nanoparticles by Ultrafast Calorimetry , 2017, Crystal growth & design.

[171]  Richard Dronskowski,et al.  Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding , 2018, Advanced materials.

[172]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[173]  Michele Parrinello,et al.  First-principles study of liquid and amorphous Sb 2 Te 3 , 2010 .

[174]  S. Elliott,et al.  Ab Initio computer simulation of the early stages of crystallization: application to Ge(2)Sb(2)Te(5) phase-change materials. , 2011, Physical review letters.

[175]  J. Skelton,et al.  In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge2Sb2Te5 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[176]  C. David Wright,et al.  On‐Chip Photonic Memory Elements Employing Phase‐Change Materials , 2014, Advanced materials.

[177]  Michael B. Sullivan,et al.  Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale Ge2Sb2Te5: An ab initio molecular dynamics study , 2018 .

[178]  X. Miao,et al.  Ultrafast Synaptic Events in a Chalcogenide Memristor , 2013, Scientific Reports.

[179]  Behrad Gholipour,et al.  Ultra-fast calorimetry study of Ge2Sb2Te5 crystallization between dielectric layers , 2012 .

[180]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .

[181]  David G. Cahill,et al.  Fullerene thermal insulation for phase change memory , 2008 .

[182]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[183]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[184]  Abu Sebastian,et al.  Tutorial: Brain-inspired computing using phase-change memory devices , 2018, Journal of Applied Physics.

[185]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[186]  A Paul Alivisatos,et al.  Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. , 2013, Physical review letters.

[187]  Chung Lam,et al.  Self‐Healing of a Confined Phase Change Memory Device with a Metallic Surfactant Layer , 2018, Advanced materials.

[188]  Mehdi Asheghi,et al.  Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. , 2014, Nano letters.

[189]  Daniel W. Hewak,et al.  Fragile‐to‐Strong Crossover in Supercooled Liquid Ag‐In‐Sb‐Te Studied by Ultrafast Calorimetry , 2015 .

[190]  Matthias Wuttig,et al.  Nanosecond threshold switching of GeTe6 cells and their potential as selector devices , 2012 .

[191]  U-In Chung,et al.  A unified 7.5nm dash-type confined cell for high performance PRAM device , 2008, 2008 IEEE International Electron Devices Meeting.

[192]  Simone Lamon,et al.  Nanomaterials for optical data storage , 2016 .

[193]  Yeonwoong Jung,et al.  Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. , 2008, Nano letters.

[194]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[195]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[196]  Germany,et al.  Neural network interatomic potential for the phase change material GeTe , 2012, 1201.2026.

[197]  C. Lam,et al.  A phase change memory cell with metallic surfactant layer as a resistance drift stabilizer , 2013, 2013 IEEE International Electron Devices Meeting.

[198]  R. O. Jones,et al.  Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .

[199]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[200]  Songlin Feng,et al.  Direct observation of metastable face-centered cubic Sb2Te3 crystal , 2016, Nano Research.

[201]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[202]  Bart J. Kooi,et al.  Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles , 2016, Scientific Reports.

[203]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[204]  Songlin Feng,et al.  Direct observation of titanium-centered octahedra in titanium–antimony–tellurium phase-change material , 2015, Nature Communications.

[205]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.