Size-density spectra and their application to image classification

We develop a density opening operator that is shown to satisfy the properties of an algebraic opening. This density opening enables the development of a number of variants of pattern spectra, which quantify the size or density information of a blob arrangement within the image. In contrast to regular morphological pattern size spectra, the proposed pattern spectra are spatially sensitive and robust to noise distortions. A pattern size-density spectrum or 2D signature was introduced and used for solving image classification tasks. Its application to the classification of real world medical images is illustrated.

[1]  Jaakko Astola,et al.  Soft morphological filtering , 1995, Journal of Mathematical Imaging and Vision.

[2]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[3]  G. Matheron Random Sets and Integral Geometry , 1976 .

[4]  Azriel Rosenfeld,et al.  A Note on the Use of Local MIN and MAX Operations in Digital Picture Processing , 1977 .

[5]  H. Heijmans Morphological image operators , 1994 .

[6]  Ulisses Braga-Neto,et al.  Object-based image analysis using multiscale connectivity , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Maria Vanrell,et al.  Mathematical morphology, granulometries, and texture perception , 1993, Optics & Photonics.

[8]  Michael H. F. Wilkinson Generalized pattern spectra sensitive to spatial information , 2002, Object recognition supported by user interaction for service robots.

[9]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[10]  Ulisses Braga-Neto,et al.  Multiscale Connected Operators , 2005, Journal of Mathematical Imaging and Vision.

[11]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[12]  Johan Van Horebeek,et al.  The approximation of a morphological opening and closing in the presence of noise , 2001, Signal Process..

[13]  Edward R. Dougherty,et al.  A general axiomatic theory of intrinsically fuzzy mathematical morphologies , 1995, IEEE Trans. Fuzzy Syst..

[14]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[15]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[17]  Guillermo Ayala,et al.  Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[19]  R. Alan Peters,et al.  Morphological pseudo bandpass image decompositions , 1996, J. Electronic Imaging.

[20]  Petros Maragos,et al.  Pattern Spectrum and Multiscale Shape Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[22]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[23]  Pierre Soille,et al.  On morphological operators based on rank filters , 2002, Pattern Recognit..