Correction to: The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion Problems

We propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of time-dependent diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. The method of lines (MOL) is used to combine spatial and temporal discretizations. The spatial scheme requires the definition of a high-order approximation of the divergence and gradient operators and the two inner products for the discrete analogs of fluxes and scalar unknowns. The discrete divergence and gradient operators are built according to a discrete duality relation. The inner product for the flux grid functions is built by explicitly imposing the conditions of consistency and stability. The family of semi-discrete mimetic methods is proved theoretically to be energy-stable as the corresponding continuous problem. Then, a full discretization is derived by combining via MOL the MFD method of order k with time marching schemes from the backward differentiation formula of order $$k+2$$ . Optimal order of accuracy is demonstrated for the scalar variable and verified numerically by solving the time-dependent diffusion problems with a variable diffusion tensor for k from 0 to 3 on three different unstructured mesh families.

[1]  Gianmarco Manzini,et al.  Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .

[2]  Lourenço Beirão da Veiga,et al.  Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[3]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[4]  Gianmarco Manzini,et al.  Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes , 2017, J. Comput. Phys..

[5]  Paola F. Antonietti,et al.  Mimetic finite difference approximation of quasilinear elliptic problems , 2015 .

[6]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[7]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[8]  Gianmarco Manzini,et al.  Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..

[9]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[10]  Florin A. Radu,et al.  Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space , 2015, Numerische Mathematik.

[11]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[12]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[13]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[14]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[15]  M. Putti,et al.  Post processing of solution and flux for the nodal mimetic finite difference method , 2015 .

[16]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[17]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[18]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[19]  Gianmarco Manzini The Mimetic Finite Difference Method , 2013 .

[20]  Daniele Boffi,et al.  Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..

[21]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[22]  Gianmarco Manzini,et al.  Mimetic scalar products of discrete differential forms , 2014, J. Comput. Phys..

[23]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[24]  Paola F. Antonietti,et al.  Mimetic finite differences for nonlinear and control problems , 2014 .

[25]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[26]  Huadong Gao,et al.  Error Analysis of Mixed Finite Element Methods for Nonlinear Parabolic Equations , 2017, J. Sci. Comput..

[27]  Gianmarco Manzini,et al.  The arbitrary order mixed mimetic finite difference method for the diffusion equation , 2016 .

[28]  Gianmarco Manzini,et al.  A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation , 2014, J. Comput. Phys..

[29]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[30]  V. Thomée,et al.  Error estimates for some mixed finite element methods for parabolic type problems , 1981 .

[31]  Gianmarco Manzini,et al.  M-Adaptation in the mimetic finite difference method , 2014 .

[32]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[33]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[34]  Paola F. Antonietti,et al.  Mimetic Discretizations of Elliptic Control Problems , 2013, J. Sci. Comput..

[35]  Gianmarco Manzini,et al.  Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..

[36]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[37]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of elliptic obstacle problems , 2013, Math. Comput..

[38]  Gianmarco Manzini,et al.  Discretization of Mixed Formulations of Elliptic Problems on Polyhedral Meshes , 2016, 1610.05850.

[39]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[40]  M. Shashkov,et al.  A new discretization methodology for diffusion problems on generalized polyhedral meshes , 2007 .

[41]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[42]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[43]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[44]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[45]  Gianmarco Manzini,et al.  Convergence Analysis of the mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients , 2016, SIAM J. Numer. Anal..

[46]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[47]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[48]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[49]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[50]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[51]  Gianmarco Manzini,et al.  The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient , 2016, J. Comput. Phys..

[52]  Anna Scotti,et al.  MIMETIC FINITE DIFFERENCE APPROXIMATION OF FLOWS IN FRACTURED POROUS MEDIA , 2016 .