Lower and upper bounds for ω-limit sets of nonexpansive maps

Abstract If D is a subset of R n and f: D → D is an l 1-norm nonexpansive map, then it is known that every bounded orbit of f approaches a periodic orbit. Moreover, the minimal period of each periodic point of f is bounded by n! 2m, where m = 2n − 1. In this paper we shall describe two different procedures to construct periodic orbits of l 1-norm nonexpansive maps. These constructions yield that a lower bound for the largest possible minimal period of a periodic point of an l 1-norm non-expansive map is given by 3·2n − 1, n ≥ 3. Ifn ≤ 5, we shall also improve the upper bound for the largest possible minimal period.

[1]  MICHAEL SCHEUTZOW,et al.  Periods of Non-expansive Operators on Finite l1-Spaces , 1991, Eur. J. Comb..

[2]  Roger D. Nussbaum,et al.  Estimates of the periods of periodic points for nonexpansive operators , 1991 .

[3]  S. M. Verduyn Lunel,et al.  Generalizations of the Perron-Frobenius Theorem for Nonlinear Maps , 1999 .

[4]  Bas Lemmens Integral rigid sets and periods of nonexpansive maps , 1999 .

[5]  Roger D. Nussbaum,et al.  Omega limit sets of nonexpansive maps: finiteness and cardinality estimates , 1990, Differential and Integral Equations.

[6]  M. Scheutzow,et al.  Periodic points of nonexpansive maps and nonlinear generalizations of the Perron-Frobenius theory , 1998 .

[7]  Mustafa A. Akcoglu,et al.  Nonlinear models of diffusion on a finite space , 1987 .

[8]  Michael Scheutzow,et al.  Periods of Nonexpansive Operators on Finite l1-Spaces , 1988, Eur. J. Comb..

[9]  X. Cabré,et al.  Stable solutions of semilinear elliptic problems in convex domains , 1998 .

[10]  Michael Scheutzow,et al.  Admissible Arrays and a Nonlinear Generalization of Perron–Frobenius Theory , 1998 .

[11]  M. Slemrod,et al.  Asymptotic behavior of nonlinear contraction semigroups , 1973 .

[12]  Noga Alon,et al.  Separating Pairs of Points by Standard Boxes , 1985, Eur. J. Comb..

[13]  Yair Censor,et al.  Recent Developments in Optimization Theory and Nonlinear Analysis: Ams/Imu Special Session on Optimization and Nonlinear Analysis, May 24-26, 1995, Jerusalem, Israel , 1997 .