A Kolmogorov-Smirnov Test for r Samples
暂无分享,去创建一个
[1] S. G. Mohanty,et al. Lattice Path Counting and Applications. , 1980 .
[2] I. Gessel,et al. Random walk in a Weyl chamber , 1992 .
[3] S. G. Mohanty,et al. Higher dimensional lattice paths with diagonal steps , 1976, Discret. Math..
[4] H. T. David. A Three-Sample Kolmogorov-Smirnov Test , 1958 .
[5] G. P. Steck. The Smirnov Two Sample Tests as Rank Tests , 1969 .
[6] Michael Filaseta,et al. A New Method for Solving a Class of Ballot Problems , 1985, J. Comb. Theory, Ser. A.
[7] J. Kiefer,et al. K-Sample Analogues of the Kolmogorov-Smirnov and Cramer-V. Mises Tests , 1959 .
[8] Doron Zeilberger. Andre's reflection proof generalized to the many-candidate ballot problem , 1983, Discret. Math..
[9] David J. Grabiner. Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval , 2000, J. Comb. Theory, Ser. A.
[10] Germain Kreweras,et al. Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .
[11] Christian Krattenthaler,et al. Q-generalization of a Ballot Problem , 1994, Discret. Math..
[12] J. Durbin. Distribution theory for tests based on the sample distribution function , 1973 .
[13] Miklós Csörgő. Review: Galen R. Shorack and Jon A. Wellner, Empirical processes with applications to statistics , 1987 .
[14] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[15] L. Takács. On a Three-Sample Test , 1996 .
[16] C. Krattenthaler. ASYMPTOTICS FOR RANDOM WALKS IN ALCOVES OF AFFINE WEYL GROUPS , 2003, math/0301203.
[17] P. Sen,et al. Theory of rank tests , 1969 .
[18] T. Watanabe,et al. On an inclusion-exclusion formula based on the reflection principle , 1987, Discret. Math..