A Kolmogorov-Smirnov Test for r Samples

We consider the problem of testing whether r ≥ 2 samples are drawn from the same continuous distribution F(x). The test statistic we will study in some detail is defined as the maximum of the circular differences of the empirical distribution functions, a generalization of the classical 2-sample Kolmogorov-Smirnov test to r ≥ 2 independent samples. For the case of equal sample sizes we derive the exact null distribution by counting lattice paths confined to stay in the scaled alcove ${\cal A}$r of the affine Weyl group Ar−1. This is done using a generalization of the classical reflection principle. By a standard diffusion scaling we derive also the asymptotic distribution of the test statistic in terms of a multivariate Dirichlet series. When the sample sizes are not equal the reflection principle no longer works, but we are able to establish a weak convergence result even in this case showing that by a proper rescaling a test statistic based on a linear transformation of the circular differences of the empirical distribution functions has the same asymptotic distribution as the test statistic in the case of equal sample sizes.

[1]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[2]  I. Gessel,et al.  Random walk in a Weyl chamber , 1992 .

[3]  S. G. Mohanty,et al.  Higher dimensional lattice paths with diagonal steps , 1976, Discret. Math..

[4]  H. T. David A Three-Sample Kolmogorov-Smirnov Test , 1958 .

[5]  G. P. Steck The Smirnov Two Sample Tests as Rank Tests , 1969 .

[6]  Michael Filaseta,et al.  A New Method for Solving a Class of Ballot Problems , 1985, J. Comb. Theory, Ser. A.

[7]  J. Kiefer,et al.  K-Sample Analogues of the Kolmogorov-Smirnov and Cramer-V. Mises Tests , 1959 .

[8]  Doron Zeilberger Andre's reflection proof generalized to the many-candidate ballot problem , 1983, Discret. Math..

[9]  David J. Grabiner Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval , 2000, J. Comb. Theory, Ser. A.

[10]  Germain Kreweras,et al.  Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .

[11]  Christian Krattenthaler,et al.  Q-generalization of a Ballot Problem , 1994, Discret. Math..

[12]  J. Durbin Distribution theory for tests based on the sample distribution function , 1973 .

[13]  Miklós Csörgő Review: Galen R. Shorack and Jon A. Wellner, Empirical processes with applications to statistics , 1987 .

[14]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[15]  L. Takács On a Three-Sample Test , 1996 .

[16]  C. Krattenthaler ASYMPTOTICS FOR RANDOM WALKS IN ALCOVES OF AFFINE WEYL GROUPS , 2003, math/0301203.

[17]  P. Sen,et al.  Theory of rank tests , 1969 .

[18]  T. Watanabe,et al.  On an inclusion-exclusion formula based on the reflection principle , 1987, Discret. Math..