Thermally Stable Biodegradable Polyesters with Camphor and Tartaric Acid Coupled Cyclic Diester Monomers for Controlled Hydrolytic Degradations

[1]  Yanyan Wang,et al.  Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin , 2022, Nature Communications.

[2]  J. Matysik,et al.  Temporal and spatial evolution of enzymatic degradation of amorphous PET plastics , 2022, npj Materials Degradation.

[3]  K. Leonhard,et al.  Effect of methyl substituents, ring size, and oxygen on bond dissociation energies and ring-opening kinetics of five- and six-membered cyclic acetals , 2022, Combustion and Flame.

[4]  D. Suh,et al.  Bio-Degradable Polyesters with Rigid Cyclic Diester from Camphor and Tartaric Acid , 2022, Journal of Polymers and the Environment.

[5]  Cheng-Kang Lee,et al.  Class I hydrophobin fusion with cellulose binding domain for its soluble expression and facile purification. , 2021, International journal of biological macromolecules.

[6]  V. Siracusa,et al.  Chemical Modification of Poly(butylene trans-1,4-cyclohexanedicarboxylate) by Camphor: A New Example of Bio-Based Polyesters for Sustainable Food Packaging , 2021, Polymers.

[7]  T. Robert,et al.  Camphoric acid as renewable cyclic building block for bio-based UV-curing polyhexylene itaconate , 2021 .

[8]  Cheng-Kang Lee,et al.  Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. , 2021, International journal of biological macromolecules.

[9]  Cheng-Kang Lee,et al.  Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate , 2020, Applied Biochemistry and Biotechnology.

[10]  S. Duquesne,et al.  An engineered PET depolymerase to break down and recycle plastic bottles , 2020, Nature.

[11]  F. Aricò Isosorbide as biobased platform chemical: Recent advances , 2020 .

[12]  T. Reineke,et al.  Next-generation polymers: Isosorbide as a renewable alternative , 2020 .

[13]  E. Lizundia,et al.  A review on the thermomechanical properties and biodegradation behaviour of polyesters , 2019 .

[14]  E. Chen,et al.  Future Directions for Sustainable Polymers , 2019, Trends in Chemistry.

[15]  Kyle E Broaders,et al.  Spirocyclic Acetal-Modified Dextran as a Flexible pH-Sensitive Solubility-Switching Material. , 2019, Biomacromolecules.

[16]  H. Sardón,et al.  PET-ran-PLA Partially Degradable Random Copolymers Prepared by Organocatalysis: Effect of Poly(l-lactic acid) Incorporation on Crystallization and Morphology , 2019, ACS Sustainable Chemistry & Engineering.

[17]  Jing Wu,et al.  Systematic Study of Thermal and (Bio)Degradable Properties of Semiaromatic Copolyesters Based on Naturally Occurring Isosorbide , 2018, ACS Sustainable Chemistry & Engineering.

[18]  M. Grunlan,et al.  Hydrolytic Degradation and Erosion of Polyester Biomaterials. , 2018, ACS macro letters.

[19]  T. Su,et al.  Effect of Hydroxyl Monomers on the Enzymatic Degradation of Poly(ethylene succinate), Poly(butylene succinate), and Poly(hexylene succinate) , 2018, Polymers.

[20]  Jeong Eon Park,et al.  Fast Hydrolysis Polyesters with a Rigid Cyclic Diol from Camphor. , 2017, Biomacromolecules.

[21]  R. Geyer,et al.  Production, use, and fate of all plastics ever made , 2017, Science Advances.

[22]  A. Vidaurre,et al.  A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values , 2016 .

[23]  A. Albertsson,et al.  Forecasting linear aliphatic copolyester degradation through modular block design , 2016 .

[24]  F. Galgani,et al.  The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach , 2016, Scientific Reports.

[25]  Y. Kimura,et al.  A bacterium that degrades and assimilates poly(ethylene terephthalate) , 2016, Science.

[26]  M. García-Martín,et al.  Synthetic Polymers from Sugar-Based Monomers. , 2016, Chemical reviews.

[27]  S. M. Davachi,et al.  A novel method to control hydrolytic degradation of nanocomposite biocompatible materials via imparting superhydrophobicity , 2015 .

[28]  D. Suh,et al.  High Thermal Stability of Bio-Based Polycarbonates Containing Cyclic Ketal Moieties , 2015 .

[29]  A. M. D. Ilarduya,et al.  Modification of properties of poly(butylene succinate) by copolymerization with tartaric acid-based monomers , 2014 .

[30]  A. M. D. Ilarduya,et al.  Biodegradable Copolyesters of Poly(hexamethylene terephthalate) Containing Bicyclic 2,4:3,5‐Di‐O‐methylene‐d‐Glucarate Units , 2014 .

[31]  A. M. D. Ilarduya,et al.  Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid , 2014 .

[32]  Raman Sharma,et al.  Plastics: Issues Challenges and Remediation , 2014 .

[33]  Van Alfen,et al.  Encyclopedia of agriculture and food systems , 2014 .

[34]  Jian Chen,et al.  Cutinase: characteristics, preparation, and application. , 2013, Biotechnology advances.

[35]  A. M. D. Ilarduya,et al.  D-Glucose-derived PET copolyesters with enhanced Tg , 2013 .

[36]  A. M. D. Ilarduya,et al.  Bio-based poly(hexamethylene terephthalate) copolyesters containing cyclic acetalized tartrate units , 2013 .

[37]  Lihai Wang,et al.  Decay resistance and thermal stability of bamboo preservatives prepared using camphor leaf extract , 2013 .

[38]  S. Muñoz-Guerra,et al.  High T(g) bio-based aliphatic polyesters from bicyclic D-mannitol. , 2013, Biomacromolecules.

[39]  A. M. D. Ilarduya,et al.  Bio-based aromatic polyesters from a novel bicyclic diol derived from D-mannitol , 2012 .

[40]  A. M. D. Ilarduya,et al.  Biodegradable aromatic copolyesters made from bicyclic acetalized galactaric acid , 2012 .

[41]  A. M. D. Ilarduya,et al.  Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties , 2012 .

[42]  A. M. D. Ilarduya,et al.  Bio-based aromatic copolyesters made from 1,6-hexanediol and bicyclic diacetalized D-glucitol , 2012 .

[43]  K. S. Bisht,et al.  One-Shot Block Copolymerization of a Functional Seven-Membered Cyclic Carbonate Derived from l-Tartaric Acid with ε-Caprolactone , 2009 .

[44]  K. S. Bisht,et al.  Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate. , 2008, Biomacromolecules.

[45]  S. Muñoz-Guerra,et al.  Poly(hexamethylene terephthalate-co-caprolactone) Copolyesters Obtained by Ring-Opening Polymerization , 2008 .

[46]  G. Guebitz,et al.  Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum , 2007 .

[47]  Andreas Heise,et al.  Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. , 2006, Biomacromolecules.

[48]  Jay C. Sy,et al.  Towards developing surface eroding poly(α-hydroxy acids) , 2006 .

[49]  N. Tsutsumi,et al.  Biodegradable Network Polyesters from Gluconolactone and Citric Acid , 2004 .

[50]  R. Gross,et al.  Biodegradable polymers for the environment. , 2002, Science.

[51]  J O Hollinger,et al.  Biodegradable bone repair materials. Synthetic polymers and ceramics. , 1986, Clinical orthopaedics and related research.

[52]  Tomoo Suzuki,et al.  Hydrolysis of polyesters by lipases , 1977, Nature.

[53]  J. Stewart,et al.  Infrared absorption spectra of some cyclic acetals of sugars , 1959 .