Fluid flow in the subduction channel: Tremolite veins and associated blackwalls in antigoritite (Villa Clara serpentinite mélange, Cuba)

[1]  S. Agostini,et al.  Relict abyssal mantle in a Caribbean forearc ophiolite (Villa Clara, central Cuba): petrogenetic and geodynamic implications , 2023, International Geology Review.

[2]  A. Garcia‐Casco,et al.  Review of Geochronologic and Geochemical Data of the Greater Antilles Volcanic Arc and Implications for the Evolution of Oceanic Arcs , 2022, Geochemistry, Geophysics, Geosystems.

[3]  Fei Liu,et al.  Early Cretaceous subduction initiation of the proto-Caribbean plate: geochronological and geochemical evidence from gabbros of the Moa-Baracoa ophiolitic massif, Eastern Cuba , 2022, Lithos.

[4]  A. Garcia‐Casco,et al.  Blueschist-facies paleo-earthquakes in a serpentinite channel (Zagros suture, Iran) enlighten seismogenesis in Mariana-type subduction margins , 2021 .

[5]  A. Cambeses,et al.  Jolts in the Jade factory: A route for subduction fluids and their implications for mantle wedge seismicity , 2021 .

[6]  A. Garcia‐Casco,et al.  Episodic hydrofracturing and large-scale flushing along deep subduction interfaces: Implications for fluid transfer and carbon recycling (Zagros Orogen, southeastern Iran) , 2021 .

[7]  A. Garcia‐Casco,et al.  A Highly dynamic hot hydrothermal system in the subduction environment: Geochemistry and geochronology of jadeitite and associated rocks of the Sierra del Convento mélange (eastern Cuba) , 2021, American Journal of Science.

[8]  J. Ague,et al.  Field‐Based Evidence for Intra‐Slab High‐Permeability Channel Formation at Eclogite‐Facies Conditions During Subduction , 2021, Geochemistry, geophysics, geosystems : G(3).

[9]  P. Monié,et al.  Drainage of subduction interface fluids into the forearc mantle evidenced by a pristine jadeitite network (Polar Urals) , 2020, Journal of Metamorphic Geology.

[10]  L. Crispini,et al.  Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling , 2020, Chemical Geology.

[11]  A. Cambeses,et al.  Multiple veining in a paleo–accretionary wedge: The metamorphic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction interface (Western Series, central Chile) , 2020 .

[12]  J. Proenza,et al.  The petrologic nature of the "Medellín Dunite" revisited: an algebraic approach and proposal of a new definition of the geological body , 2020 .

[13]  Steven A. Smith,et al.  Fluid overpressure from chemical reactions in serpentinite within the source region of deep episodic tremor , 2019, Nature Geoscience.

[14]  Steven A. Smith,et al.  Element and Sr–O isotope redistribution across a plate boundary-scale crustal serpentinite mélange shear zone, and implications for the slab-mantle interface , 2019, Earth and Planetary Science Letters.

[15]  T. Pettke,et al.  Petrology and Geochemistry of Serpentinites Associated with the Ultra-High Pressure Lago di Cignana Unit (Italian Western Alps) , 2019, Journal of Petrology.

[16]  M. Scambelluri,et al.  The water and fluid-mobile element cycles during serpentinite subduction. A review , 2019, European Journal of Mineralogy.

[17]  W. Maresch,et al.  Born in the Pacific and raised in the Caribbean: construction of the Escambray nappe stack, central Cuba. A review , 2019, European Journal of Mineralogy.

[18]  H. Furnes,et al.  Petrogenesis of plagiogranite and associated diorites and mafic rocks in the Habana–Matanzas ophiolites, northwestern half of central Cuba , 2019, Journal of the Geological Society.

[19]  J. Connolly,et al.  Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer , 2018, Earth and Planetary Science Letters.

[20]  S. Wilde,et al.  Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge , 2017 .

[21]  J. Ague Element mobility during regional metamorphism in crustal and subduction zone environments with a focus on the rare earth elements (REE) , 2017 .

[22]  P. Yamato,et al.  Fluid pathways and high‐P metasomatism in a subducted continental slice (Mt. Emilius klippe, W. Alps) , 2017 .

[23]  J. Proenza,et al.  Trace-element geochemistry of transform-fault serpentinite in high-pressure subduction mélanges (eastern Cuba): implications for subduction initiation , 2017 .

[24]  Y. Podladchikov,et al.  Fluid escape from subduction zones controlled by channel-forming reactive porosity , 2017 .

[25]  G. Harlow,et al.  Boron isotopic discrimination for subduction-related serpentinites , 2016 .

[26]  M. Bröcker,et al.  Fluid–rock interaction and evolution of a high-pressure/low-temperature vein system in eclogite from New Caledonia: insights into intraslab fluid flow processes , 2016, Contributions to Mineralogy and Petrology.

[27]  J. Escuder-Viruete,et al.  Subduction of fore-arc crust beneath an intra-oceanic arc: The high-P Cuaba mafic gneisess and amphibolites of the Rio San Juan Complex, Dominican Republic , 2016 .

[28]  S. Agostini,et al.  Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy) , 2016 .

[29]  Robert J. Stern,et al.  The geology of Cuba: A brief overview and synthesis , 2016 .

[30]  A. Casco,et al.  Geoquímica del magmatismo mesozoico asociado al Margen Continental Pasivo en el occidente y centro de Cuba , 2016 .

[31]  I. Martinez,et al.  Carbonation by fluid–rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones , 2016 .

[32]  F. Neubauer,et al.  Petrogenesis and 40Ar/39Ar dating of proto-forearc crust in the Early Cretaceous Caribbean arc: The La Tinta mélange (eastern Cuba) and its easterly correlation in Hispaniola , 2016 .

[33]  S. Wilde,et al.  Twenty-five million years of subduction-accretion-exhumation during the Late Cretaceous-Tertiary in the northwestern Caribbean: The Trinidad Dome, Escambray Complex, Central Cuba , 2016, American Journal of Science.

[34]  Dunyi Liu,et al.  Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example , 2016 .

[35]  A. Chauvet,et al.  Strain localization and fluid infiltration in the mantle wedge during subduction initiation: Evidence from the base of the New Caledonia ophiolite , 2016 .

[36]  T. Anderson,et al.  Evolution of the Caribbean plate and origin of the Gulf of Mexico in light of plate motions accommodated by strike-slip faulting , 2015 .

[37]  S. Agostini,et al.  B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction melange (Cima di Gagnone, Swiss Central Alps) , 2015 .

[38]  A. Pérez-Estaún,et al.  The Imbert Formation of northern Hispaniola: a tectono-sedimentary record of arc–continent collision and ophiolite emplacement in the northern Caribbean subduction–accretionary prism , 2015 .

[39]  R. Walker,et al.  Reaction rind formation in the Catalina Schist: Deciphering a history of mechanical mixing and metasomatic alteration , 2014 .

[40]  O. Alard,et al.  Lawsonite metasomatism and trace element recycling in subduction zones , 2014 .

[41]  J. Afonso,et al.  The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's mantle , 2014 .

[42]  O. Oncken,et al.  Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone , 2014 .

[43]  A. Pérez-Estaún,et al.  Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the Puerto Plata ophiolitic complex, Dominican Republic: Implications for the birth of the Caribbean island-arc , 2014 .

[44]  S. Nicolescu,et al.  Carbon dioxide released from subduction zones by fluid-mediated reactions , 2014 .

[45]  C. Garrido,et al.  Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: Insights from the Cerro del Almirez ultramafic massif (southern Spain) , 2013 .

[46]  C. Garrido,et al.  Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites , 2013 .

[47]  K. Hattori,et al.  Geochemistry of subduction zone serpentinites: A review , 2013 .

[48]  E. Ukar,et al.  Actinolitic rinds on low-T mafic blueschist blocks in the Franciscan shale-matrix mélange near San Simeon: Implications for metasomatism and tectonic history , 2013 .

[49]  W. Spakman,et al.  Kinematic reconstruction of the Caribbean region since the Early Jurassic , 2013 .

[50]  C. Spandler,et al.  Element recycling from subducting slabs to arc crust: A review , 2013 .

[51]  S. Schwartz,et al.  High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: Example from the Piedmont zone of the western Alps , 2013 .

[52]  A. Pérez-Estaún,et al.  Contrasting exhumation P–T paths followed by high-P rocks in the northern Caribbean subduction–accretionary complex: Insights from the structural geology, microtextures and equilibrium assemblage diagrams , 2013 .

[53]  P. Agard,et al.  Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling , 2012 .

[54]  L. Crispini,et al.  The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism , 2012 .

[55]  F. Hawthorne,et al.  Nomenclature of the amphibole supergroup , 2012 .

[56]  S. Bernasconi,et al.  GEM OLIVINE AND CALCITE MINERALIZATION PRECIPITATED FROM SUBDUCTION-DERIVED FLUIDS IN THE KOHISTAN ARC-MANTLE (PAKISTAN) , 2012 .

[57]  A. Tommasi,et al.  Plastic deformation and development of antigorite crystal preferred orientation in high-pressure serpentinites , 2012 .

[58]  M. Scambelluri,et al.  Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle , 2012 .

[59]  K. Hattori,et al.  Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic , 2012 .

[60]  F. Sàbat,et al.  Synorogenic basins of central Cuba and collision between the Caribbean and North American plates , 2012 .

[61]  S. Schwartz,et al.  Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: A LA-ICPMS study of the Lanzo ultramafic massif (Western Alps) , 2012 .

[62]  T. Pettke,et al.  Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones , 2012 .

[63]  W. Maresch,et al.  The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: implications for models of Caribbean evolution , 2012 .

[64]  T. Elliott,et al.  Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA , 2012 .

[65]  A. Pérez-Estaún,et al.  Origin and significance of the ophiolitic high-P mélanges in the northern Caribbean convergent margin: Insights from the geochemistry and large-scale structure of the Río San Juan metamorphic complex , 2011 .

[66]  P. Renne,et al.  Timing of subduction and exhumation in a subduction channel: Evidence from slab melts from La Corea Mélange (eastern Cuba) , 2011 .

[67]  M. Wingate,et al.  Timing and Evolution of Cretaceous Island Arc Magmatism in Central Cuba: Implications for the History of Arc Systems in the Northwestern Caribbean , 2011, The Journal of Geology.

[68]  T. Gerya,et al.  Subduction of young oceanic plates: A numerical study with application to aborted thermal‐chemical plumes , 2011 .

[69]  D. Bosch,et al.  The imprint of subduction fluids on subducted MORB-derived melts (Sierra del Convento Mélange, Cuba) , 2011 .

[70]  C. Garrido,et al.  Metamorphic Record of High-pressure Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a Subduction Setting (Cerro del Almirez, Nevado–Filábride Complex, Southern Spain) , 2011 .

[71]  J. Proenza,et al.  Barium-rich fluids and melts in a subduction environment (La Corea and Sierra del Convento mélanges, eastern Cuba) , 2011 .

[72]  A. Pérez-Estaún,et al.  Tectonometamorphic evolution of the Samaná complex, northern Hispaniola: Implications for the burial and exhumation of high-pressure rocks in a collisional accretionary wedge , 2011 .

[73]  Fabien Deschamps,et al.  Serpentinites act as sponges for fluid‐mobile elements in abyssal and subduction zone environments , 2011 .

[74]  T. Pettke,et al.  Internal and External Fluid Sources for Eclogite-facies Veins in the Monviso Meta-ophiolite, Western Alps: Implications for Fluid Flow in Subduction Zones , 2011 .

[75]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[76]  P. O'Brien,et al.  Fluid Migration above a Subducted Slab—Constraints on Amount, Pathways and Major Element Mobility from Partially Overprinted Eclogite-facies Rocks (Sesia Zone, Western Alps) , 2011 .

[77]  Dunyi Liu,et al.  Zircon ages, Sr-Nd-Hf isotopic compositions, and geochemistry of granitoids associated with the northern ophiolite mélange of Central Cuba: Tectonic implication for Late Cretaceous magmatism in the Northwestern Caribbean , 2010, American Journal of Science.

[78]  A. Garcia‐Casco,et al.  Metamorphic evolution of subducted hot oceanic crust (La Corea Mélange, Cuba) , 2010, American Journal of Science.

[79]  A. Vauchez,et al.  Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle , 2010 .

[80]  V. Sisson,et al.  Element residence and transport during subduction-zone metasomatism: evidence from a jadeitite-serpentinite contact, Guatemala , 2010 .

[81]  R. Klemd,et al.  Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid–rock interaction , 2010 .

[82]  R. Ash,et al.  Lithium isotopes as a tracer of fluids in a subduction zone mélange: Franciscan Complex, CA , 2010 .

[83]  K. Hattori,et al.  In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones , 2010 .

[84]  Y. Dilek,et al.  Oceanic Core Complex Development in Modern and Ancient Oceanic Lithosphere: Gabbro‐Localized versus Peridotite‐Localized Detachment Models , 2010, The Journal of Geology.

[85]  A. Garcia‐Casco,et al.  Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba , 2009 .

[86]  F. Neubauer,et al.  Fifty‐five‐million‐year history of oceanic subduction and exhumation at the northern edge of the Caribbean plate (Sierra del Convento mélange, Cuba) , 2009 .

[87]  D. V. van Hinsbergen,et al.  Paleogene Foredeep Basin Deposits of North-Central Cuba: A Record of Arc-Continent Collision between the Caribbean and North American Plates , 2008 .

[88]  Jun Gao,et al.  Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid–rock interaction in the subduction channel , 2008 .

[89]  A. Garcia‐Casco,et al.  Geochemical and Sr-Nd isotope signatures of pristine slab melts and their residues (Sierra del Convento mélange, eastern Cuba) , 2008 .

[90]  A. Garcia‐Casco,et al.  Latest Cretaceous Collision/Accretion between the Caribbean Plate and Caribeana: Origin of Metamorphic Terranes in the Greater Antilles , 2008 .

[91]  D. Kelley,et al.  Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity , 2008 .

[92]  J. Vergés,et al.  Structural and tectonic evolution of western Cuba fold and thrust belt , 2008 .

[93]  R. Klemd,et al.  Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China) , 2008 .

[94]  D. Kelley,et al.  Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30°N): Insights from B and Sr isotope data , 2008 .

[95]  B. Hacker H2O subduction beyond arcs , 2008 .

[96]  F. Neubauer,et al.  Partial Melting and Counterclockwise P–T Path of Subducted Oceanic Crust (Sierra del Convento Mélange, Cuba) , 2007 .

[97]  K. Hattori,et al.  Geochemical character of serpentinites associated with high‐ to ultrahigh‐pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones , 2007 .

[98]  A. Garcia‐Casco Magmatic paragonite in trondhjemites from the Sierra del Convento mélange, Cuba , 2007 .

[99]  T. Zack,et al.  An evaluation of reactive fluid flow and trace element mobility in subducting slabs , 2007 .

[100]  J. Hermann,et al.  Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones , 2006 .

[101]  G. Bebout Metamorphic chemical geodynamics of subduction zones , 2006 .

[102]  R. L. King,et al.  Elemental mixing systematics and Sr–Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics , 2006 .

[103]  Roberto Compagnoni,et al.  Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics , 2006 .

[104]  A. Dickin,et al.  Cretaceous to Mid-Eocene pelagic sediment budget in Puerto Rico and the Virgin Islands (northeast A. , 2006, Geologica Acta.

[105]  John F. Lewis,et al.  Ophiolite-Related Ultramafic Rocks (Serpentinites) in the Caribbean Region: A Review of their Occurrence, Composition, Origin, Emplacement and Ni-Laterite Soil Formation , 2006 .

[106]  C. Lázaro,et al.  High pressure metamorphism of ophiolites in Cuba , 2006 .

[107]  A. Basu,et al.  Geochemical evidence for a subducted infant arc in Franciscan high-grade-metamorphic tectonic blocks , 2005 .

[108]  Katherine A. Kelley,et al.  Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones , 2005 .

[109]  Christopher F. Baum Stata: The Language of Choice for Time-Series Analysis? , 2005 .

[110]  S. S. Sorensen,et al.  Jade (Nephrite and Jadeitite) and Serpentinite: Metasomatic Connections , 2005 .

[111]  J. Ague,et al.  Fluid–metasedimentary rock interactions in subduction-zone mélange: Implications for the chemical composition of arc magmas , 2004 .

[112]  S. Kesler,et al.  Age and Tectonic Setting of the Camagüey Volcanic‐Intrusive Arc, Cuba: Late Cretaceous Extension and Uplift in the Western Greater Antilles , 2004, The Journal of Geology.

[113]  T. Pettke,et al.  Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling , 2004 .

[114]  B. W. Evans The Serpentinite Multisystem Revisited: Chrysotile Is Metastable , 2004 .

[115]  P. Monié,et al.  Origin and evolution of the Escambray Massif (Central Cuba): an example of HP/LT rocks exhumed during intraoceanic subduction , 2004 .

[116]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[117]  J. Morgan,et al.  Bending-related faulting and mantle serpentinization at the Middle America trench , 2003, Nature.

[118]  Katherine A. Kelley,et al.  Composition of altered oceanic crust at ODP Sites 801 and 1149 , 2003 .

[119]  I. Daniel,et al.  Serpentinites from Central Cuba: petrology and HRTEM study , 2002 .

[120]  R. L. Torres‐Roldán,et al.  Oscillatory zoning in eclogitic garnet and amphibole, Northern Serpentinite Melange, Cuba: a record of tectonic instability during subduction? , 2002 .

[121]  Pedro A. García-Sánchez,et al.  CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms , 2000 .

[122]  J. Molina,et al.  Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O–CO2-bearing basalts , 2000 .

[123]  J. Blusztajn,et al.  The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros , 1999 .

[124]  A. Kerr,et al.  A new plate tectonic model of the Caribbean: Implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks , 1999 .

[125]  Kelin Wang,et al.  Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast japan , 1999, Science.

[126]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[127]  R. Powell,et al.  Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al 2 O 3 -SiO 2 -H 2 O , 1998 .

[128]  F. Bea,et al.  Accurate determination of 87Rb/86Sr and 147Sm/144Nd ratios by inductively-coupled-plasma mass spectrometry in isotope geoscience: an alternative to isotope dilution analysis , 1998 .

[129]  Manuel A. Iturralde-Vinent Sinopsis de la Constitucin Geolgica de Cuba , 1998 .

[130]  R. Powell,et al.  Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions , 1996 .

[131]  W. McDonough,et al.  The composition of the Earth , 1995 .

[132]  S. Hart,et al.  Nd and Sr isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites , 1994, Nature.

[133]  M. Cannat Emplacement of mantle rocks in the seafloor at mid‐ocean ridges , 1993 .

[134]  G. Bebout,et al.  Field-Based Evidence for Devolatilization in Subduction Zones: Implications for Arc Magmatism , 1991, Science.

[135]  J. Connolly Multivariable phase diagrams; an algorithm based on generalized thermodynamics , 1990 .

[136]  J. Grossman,et al.  Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California , 1989 .

[137]  George W. Fisher,et al.  Matrix analysis of metamorphic mineral assemblages and reactions , 1989 .

[138]  S. Jacobsen,et al.  Nd isotopic variations of Phanerozoic paleoceans , 1988 .

[139]  S. Sorensen Petrology of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, southern California: metasomatism and migmatization in a subduction zone metamorphic setting , 1988 .

[140]  G. Wasserburg,et al.  Sm‐Nd, Rb‐Sr, and 18O/16O isotopic systematics in an oceanic crustal section: Evidence from the Samail Ophiolite , 1981 .

[141]  J. H. Stout,et al.  Normalizations of thermodynamic properties and some implications for graphical and analytical problems in petrology , 1980 .

[142]  S. Humphris The hydrothermal alteration of oceanic basalts by seawater , 1976 .

[143]  A. Albee,et al.  Empirical Correction Factors for the Electron Microanalysis of Silicates and Oxides , 1968, The Journal of Geology.

[144]  G. Bebout,et al.  Fluid and mass transfer at subduction interfaces-The field metamorphic record , 2016 .

[145]  S. Poli,et al.  Devolatilization during subduction , 2014 .

[146]  G. Bebout Chemical and Isotopic Cycling in Subduction Zones , 2014 .

[147]  T. Plank 4.17 – The Chemical Composition of Subducting Sediments , 2014 .

[148]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[149]  T. Gerya,et al.  Tectonic blocks in serpentinite mélange (eastern Cuba) reveal large-scale convective flow of the subduction channel , 2011 .

[150]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[151]  J. Pindell,et al.  Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update , 2009 .

[152]  GBoncB W. Frsnnn An improved method for algebraic analysis of metamorphic mineral assemblages , 2007 .

[153]  Ruhr-Universitát Bochum Structure, tectonics and metamorphic development of the Sancti Spiritus Dome (eastern Escambray massif, Central Cuba) , 2006 .

[154]  D. Cristal Primitive Cretaceous island-arc volcanic rocks in eastern Cuba: the Téneme Formation , 2006 .

[155]  E. Rampone,et al.  Fluid and Element Cycling in Subducted Serpentinite: a Trace-Element Study of the Erro–Tobbio High-Pressure Ultramafites (Western Alps, NW Italy) , 2001 .

[156]  M. Perfit,et al.  Phengite-hosted LILE Enrichment in Eclogite and Related Rocks: Implications for Fluid-Mediated Mass Transfer in Subduction Zones and Arc Magma Genesis , 1997 .

[157]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[158]  James B. Thompson Composition space; an algebraic and geometric approach , 1982 .