An online video recommendation framework using rich information

Automatic video recommendation is involved in an attempt to tackle the information-overload problem, aiming to present the personalized video list to the user. This paper presents a novel approach to improve the accuracy of the video recommendation by combining the content-based filtering (CBF) method and the collaborative filtering (CF) method. Multimodal information is utilized to calculate the similarity among different videos to overcome the sparseness problem by CF method. We conduct experiments on a dataset of more than 11,000 videos and the results demonstrate the feasibility and effectiveness of our approach.

[1]  Martin Halvey,et al.  Search trails using user feedback to improve video search , 2008, ACM Multimedia.

[2]  Luo Si,et al.  Preference-based Graphic Models for Collaborative Filtering , 2002, UAI.

[3]  Tao Mei,et al.  VideoReach: an online video recommendation system , 2007, SIGIR.

[4]  Luo Si,et al.  Collaborative filtering with decoupled models for preferences and ratings , 2003, CIKM '03.

[5]  Meng Wang,et al.  Visual query suggestion , 2009, ACM Multimedia.

[6]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[7]  Meng Wang,et al.  Unified Video Annotation via Multigraph Learning , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Meng Wang,et al.  Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation , 2009, IEEE Transactions on Multimedia.

[9]  Byeong Man Kim,et al.  An approach for combining content-based and collaborative filters , 2003, IRAL.

[10]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[11]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[12]  Jianping Fan,et al.  Personalized news video recommendation , 2008, MMM.

[13]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[14]  Tat-Seng Chua,et al.  Utilizing related samples to learn complex queries in interactive concept-based video search , 2010, CIVR '10.

[15]  Tao Mei,et al.  Joint multi-label multi-instance learning for image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[17]  Jonghun Park,et al.  Online Video Recommendation through Tag-Cloud Aggregation , 2011, IEEE MultiMedia.

[18]  Stephen E. Robertson,et al.  Threshold setting in adaptive filtering , 2000, J. Documentation.

[19]  Meng Wang,et al.  Dynamic captioning: video accessibility enhancement for hearing impairment , 2010, ACM Multimedia.

[20]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[21]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[22]  Robin D. Burke,et al.  Hybrid Web Recommender Systems , 2007, The Adaptive Web.

[23]  Shankar Kumar,et al.  Video suggestion and discovery for youtube: taking random walks through the view graph , 2008, WWW.

[24]  Anton Nijholt,et al.  Prediction Strategies in a TV Recommender System – Method and Experiments , 2003, ICWI.