An Overview of the Tecton Proof System

The Tecton proof system is an experimental tool for constructing proofs of first-order logic formulas and of program specifications expressed using formulas in Hoare's axiomatic formalism. It is designed to make interactive proof construction easier than with previous tools, by maintaining multiple proof attempts internally in a structured form called a proof forest; displaying them in an easy to comprehend form, using a combination of tabular formats, graphical representations, and hypertext links; and automating substantial parts of proofs through rewriting, induction, case analysis, and generalization inference mechanisms, along with a linear arithmetic decision procedure. —From the Authors' Abstract

[1]  David R. Musser,et al.  Tecton: A Framework for Specifying and Verifying Generic System Components , 1992 .

[2]  David R. Musser,et al.  The AFFIRM Theorem Prover: Proof Forests and Management of Large Proofs , 1980, CADE.

[3]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .

[4]  Sentot Kromodimoeljo,et al.  Eves System Description , 1992, CADE.

[5]  Alexander A. Stepanov,et al.  Tecton: A Language for Manipulating Generic Objects , 1981, Program Specification.

[6]  Robert E. Shostak,et al.  A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.

[7]  M. Gordon HOL: A Proof Generating System for Higher-Order Logic , 1988 .

[8]  Gilles Kahn,et al.  Real theorem provers deserve real user-interfaces , 1992, SDE 5.

[9]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[10]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[11]  Avron Barr,et al.  The Handbook of Artificial Intelligence , 1982 .

[12]  Robert S. Boyer,et al.  A computational logic handbook , 1979, Perspectives in computing.

[13]  Deepak Kapur,et al.  A Mechanizable Induction Principle for Equational Specifications , 1988, CADE.

[14]  Chris George The RAISE Specification Langiage: A Tutorial , 1991, VDM Europe.

[15]  Stephen J. Garland,et al.  Larch: Languages and Tools for Formal Specification , 1993, Texts and Monographs in Computer Science.

[16]  Hantao Zhang,et al.  Implementing Contextual Rewriting , 1992, CTRS.

[17]  Hans Toetenel,et al.  VDM'91 Formal Software Development Methods , 1991, Lecture Notes in Computer Science.

[18]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[19]  Deepak Kapur,et al.  The Tecton Proof System , 1991, RTA.

[20]  Stephen J. Garland,et al.  PVS: A Prototype . . . , 1992 .

[21]  Robert S. Boyer,et al.  Integrating decision procedures into heuristic theorem provers: a case study of linear arithmetic , 1988 .

[22]  Tobias Nipkow,et al.  Isabelle-91 , 1992, CADE.

[23]  Alexander A. Stepanov,et al.  The Ada® Generic Library , 1989, Springer Compass International.

[24]  James J. Horning,et al.  Report on the Larch Shared Language , 1986, Sci. Comput. Program..

[25]  Lawrence C. Paulson,et al.  A Higher-Order Implementation of Rewriting , 1983, Sci. Comput. Program..

[26]  Alexander A. Stepanov,et al.  Operators and algebraic structures , 1981, FPCA '81.

[27]  Barr and Feigenbaum Edward A. Avron,et al.  The Handbook of Artificial Intelligence , 1981 .

[28]  Deepak Kapur,et al.  An Overview of Rewrite Rule Laboratory (RRL) , 1989, RTA.

[29]  .. I,et al.  OPERATORS AND ALGEBRAIC STRUCTURES , 1981 .

[30]  Robin Milner,et al.  Edinburgh LCF , 1979, Lecture Notes in Computer Science.

[31]  Jeff Conklin,et al.  Hypertext: An Introduction and Survey , 1987, Computer.

[32]  Gilles Kahn,et al.  Real theorem provers deserve real user-interfaces , 1992 .

[33]  Alexander A. Stepanov,et al.  The Ada® Generic Library: Linear List Processing Packages , 1989 .

[34]  Hantao Zhang,et al.  An overview of Rewrite Rule Laboratory (RRL) , 1995 .