Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014

The Fuzzy c-means is one of the most popular ongoing area of research among all types of researchers including Computer science, Mathematics and other areas of engineering, as well as all areas of optimization practices. Several problems from various areas have been effectively solved by using FCM and its different variants. But, for efficient use of the algorithm in various diversified applications, some modifications or hybridization with other algorithms are needed. A comprehensive survey on FCM and its applications in more than one decade has been carried out in this paper to show the efficiency and applicability in a mixture of domains. Also, another intention of this survey is to encourage new researchers to make use of this simple algorithm (which is popularly called soft classification model) in problem solving.

[1]  Dong-Chul Park,et al.  Intuitive Fuzzy C-Means Algorithm for MRI Segmentation , 2010, 2010 International Conference on Information Science and Applications.

[2]  Jim Z. C. Lai,et al.  Rough clustering using generalized fuzzy clustering algorithm , 2013, Pattern Recognit..

[3]  Mehmet Kuntalp,et al.  A study on fuzzy C-means clustering-based systems in automatic spike detection , 2007, Comput. Biol. Medicine.

[4]  Witold Pedrycz,et al.  Fuzzy clustering with a knowledge-based guidance , 2004, Pattern Recognit. Lett..

[5]  Ioannis A. Maraziotis,et al.  A semi-supervised fuzzy clustering algorithm applied to gene expression data , 2012, Pattern Recognit..

[6]  Xiangwei Kong,et al.  Fuzzy clustering algorithms based on resolution and their application in image compression , 2002, Pattern Recognit..

[7]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  Oleg S. Pianykh Analytically tractable case of fuzzy c-means clustering , 2006, Pattern Recognit..

[9]  Muammer Ozer,et al.  Fuzzy c-means clustering and Internet portals: A case study , 2005, Eur. J. Oper. Res..

[10]  Li Pheng Khoo,et al.  A fuzzy c-means based hybrid evolutionary approach to the clustering of supply chain , 2013, Comput. Ind. Eng..

[11]  Dong-Chul Park,et al.  Gradient based fuzzy c-means (GBFCM) algorithm , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[12]  Xu Ze-shui Intuitionistic fuzzy hierarchical clustering algorithms , 2012 .

[13]  Hassen Taleb,et al.  Classification of Chest Lesions with Using Fuzzy C-Means Algorithm and Support Vector Machines , 2013, SOCO-CISIS-ICEUTE.

[14]  Fu Guoyao,et al.  Optimization methods for fuzzy clustering , 1998 .

[15]  M. A. Balafar Fuzzy C-mean based brain MRI segmentation algorithms , 2012, Artificial Intelligence Review.

[16]  Po-Whei Huang,et al.  A size-insensitive integrity-based fuzzy c-means method for data clustering , 2014, Pattern Recognit..

[17]  Doheon Lee,et al.  A novel initialization scheme for the fuzzy c-means algorithm for color clustering , 2004, Pattern Recognit. Lett..

[18]  Youlin Shang,et al.  Semi-supervised outlier detection based on fuzzy rough C-means clustering , 2010, Math. Comput. Simul..

[19]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[20]  Andrzej Bargiela,et al.  Automatic brain MRI segmentation scheme based on feature weighting factors selection on fuzzy c-means clustering algorithms with Gaussian smoothing , 2010, CI 2010.

[21]  Yüksel Özbay,et al.  A fuzzy clustering neural network architecture for classification of ECG arrhythmias , 2006, Comput. Biol. Medicine.

[22]  Lutgarde M. C. Buydens,et al.  Geometrically guided fuzzy C-means clustering for multivariate image segmentation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[23]  Qian Wang,et al.  The range of the value for the fuzzifier of the fuzzy c-means algorithm , 2012, Pattern Recognit. Lett..

[24]  S. R. Kannan,et al.  Effective fuzzy c-means based kernel function in segmenting medical images , 2010, Comput. Biol. Medicine.

[25]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[26]  Francisco de A. T. de Carvalho,et al.  Kernel fuzzy c-means with automatic variable weighting , 2014, Fuzzy Sets Syst..

[27]  Witold Pedrycz,et al.  Shadowed c-means: Integrating fuzzy and rough clustering , 2010, Pattern Recognit..

[28]  Li Zhou,et al.  A fast fuzzy c-means algorithm for colour image segmentation , 2013, Int. J. Inf. Commun. Technol..

[29]  Jing Li,et al.  A Fixed Suppressed Rate Selection Method for Suppressed Fuzzy C-Means Clustering Algorithm , 2014 .

[30]  Pierre Hansen,et al.  Fuzzy J-Means: a new heuristic for fuzzy clustering , 2001, Pattern Recognit..

[31]  Jiann-Fuh Chen,et al.  Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach , 2014 .

[32]  Jun Xiao,et al.  Research of Brain MRI image segmentation algorithm based on FCM and SVM , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[33]  Himansu Sekhar Behera,et al.  An Improved Firefly Fuzzy C-Means (FAFCM) Algorithm for Clustering Real World Data Sets , 2014 .

[34]  Chia-Feng Juang,et al.  Fuzzy C-means based support vector machine for channel equalisation , 2009, Int. J. Gen. Syst..

[35]  José Luis Martín,et al.  Implementation of a modified Fuzzy C-Means clustering algorithm for real-time applications , 2005, Microprocess. Microsystems.

[36]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[37]  Jian-Ping Mei,et al.  LinkFCM: Relation integrated fuzzy c-means , 2013, Pattern Recognit..

[38]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[39]  Luis Angel García-Escudero,et al.  Robust constrained fuzzy clustering , 2013, Inf. Sci..

[40]  Aboul Ella Hassanien,et al.  Fuzzy and hard clustering analysis for thyroid disease , 2013, Comput. Methods Programs Biomed..

[41]  Kai Li,et al.  Fuzzy Clustering with Generalized Entropy Based on Neural Network , 2014 .

[42]  Sadaaki Miyamoto,et al.  Information clustering based on fuzzy multisets , 2003, Inf. Process. Manag..

[43]  James C. Bezdek,et al.  Generalized fuzzy c-means clustering strategies using Lp norm distances , 2000, IEEE Trans. Fuzzy Syst..

[44]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[45]  L. F. Liu,et al.  A new algorithm of modified fuzzy C means clustering (FCM) and the prediction of carbonate fluid , 2014 .

[46]  Miin-Shen Yang,et al.  ON STOCHASTIC CONVERGENCE THEOREMS FOR THE FUZZY C-MEANS CLUSTERING PROCEDURE∗ , 1990 .

[47]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[48]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[49]  Carl G. Looney,et al.  Interactive clustering and merging with a new fuzzy expected value , 2002, Pattern Recognit..

[50]  John Tsimikas,et al.  On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization , 2013, Fuzzy Sets Syst..

[51]  Oscar Castillo,et al.  Fuzzy granular gravitational clustering algorithm for multivariate data , 2014, Inf. Sci..

[52]  Michael J. Brennan,et al.  Structural damage detection by fuzzy clustering , 2008 .

[53]  Hans-Jürgen Zimmermann,et al.  Fuzzy rule based classification with FeatureSelector and modified threshold accepting , 2000, Eur. J. Oper. Res..

[54]  Zexuan Ji,et al.  A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image , 2011, Comput. Medical Imaging Graph..

[55]  Witold Pedrycz,et al.  Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering , 2006, Neurocomputing.

[56]  Thomas Villmann,et al.  Median fuzzy c-means for clustering dissimilarity data , 2010, Neurocomputing.

[57]  Aruna Tiwari,et al.  Handling Big Data with Fuzzy Based Classification Approach , 2013, WCSC.

[58]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[59]  Ujjwal Maulik,et al.  Towards improving fuzzy clustering using support vector machine: Application to gene expression data , 2009, Pattern Recognit..

[60]  Shyi-Ming Chen,et al.  Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques , 2010, Inf. Sci..

[61]  R. Bellman,et al.  Abstraction and pattern classification , 1996 .

[62]  Yadong Wang,et al.  Improving fuzzy c-means clustering based on feature-weight learning , 2004, Pattern Recognit. Lett..

[63]  Wei Li-mei Rival Checked Fuzzy C-Means Algorithm , 2000 .

[64]  Asifullah Khan,et al.  Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images , 2014, Comput. Methods Programs Biomed..

[65]  Semra Içer,et al.  Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods , 2013, Comput. Methods Programs Biomed..

[66]  Xiaoying Tai,et al.  A hierarchical clustering algorithm based on fuzzy graph connectedness , 2006, Fuzzy Sets Syst..

[67]  Dante Mújica-Vargas,et al.  A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation , 2013, Pattern Recognit. Lett..

[68]  Steven Furnell,et al.  D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks , 2014 .

[69]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[70]  Liping Wang,et al.  Unsupervised Brain Tissue Segmentation by Using Bias Correction Fuzzy C-Means and Class-Adaptive Hidden Markov Random Field Modelling , 2014 .

[71]  Xiang Li,et al.  A fuzzy minimax clustering model and its applications , 2012, Inf. Sci..

[72]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[73]  K. Thangavel,et al.  An Intuitionistic Fuzzy Approach to Fuzzy Clustering of Numerical Dataset , 2014 .

[74]  Dan Hu,et al.  Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm , 2014, Science China Earth Sciences.

[75]  Mohamed S. Kamel,et al.  New algorithms for solving the fuzzy clustering problem , 1994, Pattern Recognit..

[76]  Xinbo Gao,et al.  A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation , 2011, Signal Process..

[77]  Chengjie Zhu,et al.  Robust Semi-supervised Kernel-FCM Algorithm Incorporating Local Spatial Information for Remote Sensing Image Classification , 2013, Journal of the Indian Society of Remote Sensing.

[78]  Wenzhong Shi,et al.  A novel dynamic threshold method for unsupervised change detection from remotely sensed images , 2014 .

[79]  Jian Xiao,et al.  A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation , 2013, Pattern Recognit. Lett..

[80]  Rachna Soni,et al.  Radial basis function network using intuitionistic fuzzy C means for software cost estimation , 2013, Int. J. Comput. Appl. Technol..

[81]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Jin Young Kim,et al.  Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering , 2012, Comput. Methods Programs Biomed..

[83]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[84]  Gabriele Steidl,et al.  A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data , 2012, Pattern Recognit..

[85]  Weixin Xie,et al.  Suppressed fuzzy c-means clustering algorithm , 2003, Pattern Recognit. Lett..

[86]  Jonathan M. Garibaldi,et al.  A preliminary study on automatic breast cancer data classification using semi-supervised fuzzy c-means , 2013 .

[87]  Ahmet Arslan,et al.  A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm , 2013, Inf. Sci..

[88]  Miin-Shen Yang,et al.  ON ASYMPTOTIC NORMALITY OF A CLASS OF FUZZY C-MEANS CLUSTERING PROCEDURES , 1994 .

[89]  Tania S. Douglas,et al.  Fuzzy clustering to detect tuberculous meningitis-associated hyperdensity in CT images , 2008, Comput. Biol. Medicine.

[90]  S. Ramathilagam,et al.  Strong fuzzy c-means in medical image data analysis , 2012, J. Syst. Softw..

[91]  Miin-Shen Yang,et al.  A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction , 2008, Pattern Recognit. Lett..

[92]  Jacek M. Leski,et al.  A time-domain-constrained fuzzy clustering method and its application to signal analysis , 2005, Fuzzy Sets Syst..

[93]  Wahengbam Kanan Kumar,et al.  A Novel MRI Brain Edge Detection Using PSOFCM Segmentation and Canny Algorithm , 2014, 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies.

[94]  J. C. Noordam,et al.  Multivariate image segmentation with cluster size insensitive fuzzy C-means , 2002 .

[95]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[96]  Witold Pedrycz,et al.  Fuzzy clustering with supervision , 2004, Pattern Recognit..

[97]  K. R. Sudha,et al.  Fuzzy C-Means clustering for robust decentralized load frequency control of interconnected power system with Generation Rate Constraint , 2012 .

[98]  Miin-Shen Yang,et al.  Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation , 2006, Pattern Recognit. Lett..

[99]  Chao Xu,et al.  Vague C-means clustering algorithm , 2013, Pattern Recognit. Lett..

[100]  Miin-Shen Yang,et al.  Alternative c-means clustering algorithms , 2002, Pattern Recognit..

[101]  Sven Nordholm,et al.  A novel fuzzy clustering algorithm using observation weighting and context information for reverberant blind speech separation , 2010, Signal Process..

[102]  Ricardo J. G. B. Campello,et al.  Evolutionary fuzzy clustering of relational data , 2011, Theor. Comput. Sci..

[103]  Michele Ceccarelli,et al.  Improving fuzzy clustering of biological data by metric learning with side information , 2008, Int. J. Approx. Reason..

[104]  Qiang Chen,et al.  Generalized rough fuzzy c-means algorithm for brain MR image segmentation , 2012, Comput. Methods Programs Biomed..

[105]  Musa H. Asyali,et al.  Gene Expression Profile Classification: A Review , 2006 .

[106]  Igor Skrjanc,et al.  Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. , 2011, ISA transactions.

[107]  Yang Yan,et al.  Fuzzy semi-supervised co-clustering for text documents , 2013, Fuzzy Sets Syst..

[108]  Qiang Chen,et al.  Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation , 2014, Pattern Recognit..

[109]  Thomas A. Runkler,et al.  Fuzzy Clustering by Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[110]  Lazaros S. Iliadis,et al.  An intelligent system employing an enhanced fuzzy c-means clustering model: Application in the case of forest fires , 2010 .