Recovery against Environmental Action

Autogenic self-healing has been defined in chapter 1 as a self-healing process where the recovery process uses materials components that could also be present when not specifically designed for self-healing (own generic materials).

[1]  Willy Verstraete,et al.  A novel approach to calcium removal from calcium-rich industrial wastewater. , 2003, Water research.

[2]  M. R. Islam,et al.  A New Microbial Plugging Process and Its Impact on Fracture Remediation , 1995 .

[3]  H. Meichsner,et al.  Über die Selbstdichtung von Trennrissen in Beton. , 1992 .

[4]  Nele De Belie,et al.  Bacterial carbonate precipitation improves the durability of cementitious materials , 2008 .

[5]  Olivier Braissant,et al.  Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? , 2002, Naturwissenschaften.

[6]  Bernd Ripphausen,et al.  Untersuchungen zur Wasserdurchlässigkeit und Sanierung von Stahlbetonbauteilen mit Trennrissen , 1989 .

[7]  N. I. Ershova,et al.  Chromaticity Characteristics of NH2Hg2I3 and I2: Molecular Iodine As a Test Form Alternative to Nessler’s Reagent , 2005 .

[8]  C. Rodriguez-Navarro,et al.  Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. , 2007, Chemosphere.

[9]  Piero Tiano,et al.  Biomediated reinforcement of weathered calcareous stones , 2006 .

[10]  P. Dubruel,et al.  Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography , 2012 .

[11]  Jani C. Ingram,et al.  Strontium incorporation into calcite generated by bacterial ureolysis , 2002 .

[12]  Mustafa Şahmaran,et al.  Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash , 2008 .

[13]  Susanne Douglas,et al.  Mineral formation by bacteria in natural microbial communities , 1998 .

[14]  S. Bang,et al.  Microbiological precipitation of CaCO3 , 1999 .

[15]  R. Delgado,et al.  Precipatation of calcium carbonate by Vibrio spp. from an inland saltern , 1994 .

[16]  C. Rodriguez-Navarro,et al.  Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone , 2008 .

[17]  G. Muyzer,et al.  Application of bacteria as self-healing agent for the development of sustainable concrete , 2010 .

[18]  Reddy,et al.  Microbial remediation of defects in building materials and structures , 2010 .

[19]  N. Belie,et al.  Crack repair in concrete using biodeposition , 2008 .

[20]  Gilles Pijaudier-Cabot,et al.  Mechanical Characterization of the Self-Healing Effect of Cracks in Ultra High Performance Concrete , 2005 .

[21]  Nataliya Hearn,et al.  Self-sealing, autogenous healing and continued hydration: What is the difference? , 1998 .

[22]  E. Bedmar,et al.  Bioconservation of Deteriorated Monumental Calcarenite Stone and Identification of Bacteria with Carbonatogenic Activity , 2010, Microbial Ecology.

[23]  Henk M. Jonkers,et al.  CRACK REPAIR BY CONCRETE-IMMOBILIZED BACTERIA , 2007 .

[24]  Stefan Jacobsen,et al.  Self healing of high strength concrete after deterioration by freeze/thaw , 1996 .

[25]  Viktor Mechtcherine,et al.  Experimental investigations on the durability of fibre–matrix interfaces in textile-reinforced concrete , 2009 .

[26]  R. Y. Morita Calcite precipitation by marine bacteria , 1980 .

[27]  S van der Zwaag,et al.  Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Carola Edvardsen,et al.  Water Permeability and Autogenous Healing of Cracks in Concrete , 1999 .

[29]  N. De Belie,et al.  Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete , 2012, Journal of Industrial Microbiology & Biotechnology.

[30]  B. Chattopadhyay,et al.  Use of microorganism to improve the strength of cement mortar , 2005 .

[31]  F. G. Ferris,et al.  Bacteriogenic mineral plugging , 1996 .

[32]  N. Buenfeld,et al.  Potential of superabsorbent polymer for self-sealing cracks in concrete , 2010 .

[33]  P. Maurice,et al.  Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting Calcite Precipitation and for Solid-Phase Capture of Inorganic Contaminants , 2001 .

[34]  Viktor Mechtcherine,et al.  Permeation of water and gases through cracked textile reinforced concrete , 2011 .

[35]  Ram Chandra,et al.  Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent , 2006 .

[36]  V. V. Samonin,et al.  A study of the adsorption of bacterial cells on porous materials , 2004, Microbiology.

[37]  N. De Belie,et al.  Microorganisms versus stony materials: a love–hate relationship , 2010 .

[38]  R. Delgado,et al.  Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. , 2004, FEMS microbiology ecology.

[39]  Willy Verstraete,et al.  Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation , 2003, Applied and Environmental Microbiology.

[40]  W. Verstraete,et al.  Key roles of pH and calcium metabolism in microbial carbonate precipitation , 2002 .

[41]  Victoria S. Whiffin,et al.  Microbial CaCO3 Precipitation: For the Production of Biocement , 2008 .

[42]  James S. Bonner,et al.  Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland , 2004 .

[43]  Stefan Jacobsen,et al.  Sem observations of the microstructure of frost deteriorated and self-healed concretes , 1995 .

[44]  Carolyn M. Dry,et al.  A time-release technique for corrosion prevention , 1998 .

[45]  P. Dubruel,et al.  Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers , 2014 .

[46]  S. Bang,et al.  Remediation of Concrete Using Micro-Organisms , 2001 .

[47]  Henk M. Jonkers,et al.  Quantification of crack-healing in novel bacteria-based self-healing concrete , 2011 .

[48]  Victoria S. Whiffin,et al.  Microbial Carbonate Precipitation as a Soil Improvement Technique , 2007 .

[49]  S. Castanier,et al.  Ca-carbonates precipitation and limestone genesis — the microbiogeologist point of view , 1999 .

[50]  S. Bang,et al.  4843 - IMPROVEMENT OF CONCRETE DURABILITY BY BACTERIAL MINERAL PRECIPITATION , 2013 .

[51]  Henk M. Jonkers,et al.  Self Healing Concrete: A Biological Approach , 2007 .

[52]  J. DeJong,et al.  Microbially Induced Cementation to Control Sand Response to Undrained Shear , 2006 .

[53]  E. F. Wagner Autogenous Healing of Cracks in Cement‐Mortar Linings for Gray‐Iron and Ductile‐Iron Water Pipe , 1974 .

[54]  W. Verstraete,et al.  Use of bacteria to repair cracks in concrete , 2010 .

[55]  W. Verstraete,et al.  Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species , 2006, Biodegradation.

[56]  C. Morley,et al.  Self-sealing property of concrete—Experimental evidence , 1997 .

[57]  A. Boronat,et al.  Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon , 1973, Nature.

[58]  Toyoharu Nawa,et al.  Self-healing ability of fly ash–cement systems , 2009 .

[59]  C. Rodriguez-Navarro,et al.  Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization , 2003, Applied and Environmental Microbiology.

[60]  Victor C. Li,et al.  Durability properties of micro-cracked ECC containing high volumes fly ash , 2009 .

[61]  N. Belie,et al.  Autogenous healing of cracks in cementitious materials with varying mix compositions , 2009 .

[62]  Nele De Belie,et al.  Bacterial carbonate precipitation as an alternative surface treatment for concrete , 2008 .

[63]  C. M. Sangha,et al.  Strength and Deformation Properties of Autogenously Healed Mortars , 1973 .

[64]  A. Galizzi,et al.  Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization , 2006, Journal of bacteriology.

[65]  Hubert Rahier,et al.  Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation , 2012 .

[66]  Liu Xiao-yan Experimental Study on Self-healing Performance of Concrete , 2005 .

[67]  P. Dubruel,et al.  The use of superabsorbent polymers as a crack sealing and crack healing mechanism in cementitious materials , 2012 .

[68]  J. G. Keer,et al.  Autogenous healing of thin cement based sheets , 1983 .

[69]  W. Verstraete,et al.  Microbial carbonate precipitation in construction materials: A review , 2010 .

[70]  A.L.A. Fraaij,et al.  Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar , 2011 .

[71]  Brajadulal Chattopadhyay,et al.  Microbial activity on the microstructure of bacteria modified mortar , 2009 .

[72]  M. Nemati,et al.  Modification of porous media permeability, using calcium carbonate produced enzymatically in situ , 2003 .

[73]  S. Weiner,et al.  Stone reinforcement by induction of calcite crystals using organic matrix macromolecules. Feasibility study , 1992 .

[74]  Henk M. Jonkers,et al.  Bacteria-based self-healing concrete , 2011 .

[75]  J. Ettenauer,et al.  Bacterial Community Dynamics During the Application of a Myxococcus xanthus-Inoculated Culture Medium Used for Consolidation of Ornamental Limestone , 2010, Microbial Ecology.

[76]  J. Warmington,et al.  Urease activity in microbiologically-induced calcite precipitation. , 2002, Journal of biotechnology.

[77]  Colorado Colorado,et al.  AMERICAN SOCIETY OF CIVIL ENGINEERS , 2010 .

[78]  P. Bowen,et al.  Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment , 2011 .

[79]  Masanori Tsuji,et al.  Basic Studies on Simplified Curing Technique, and Prevention of Initial Cracking and Leakage of Water through Cracks of Concrete by Applying Superabsorbent Polymers as New Concrete Admixture , 1999 .

[80]  Henry L. Ehrlich,et al.  GEOMICROBIOLOGY: ITS SIGNIFICANCE FOR GEOLOGY , 1998 .

[81]  En-Hua Yang,et al.  Use of High Volumes of Fly Ash to Improve ECC Mechanical Properties and Material Greenness , 2007 .

[82]  G. Mastromei,et al.  Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. , 1999, Journal of microbiological methods.

[83]  A. Mukherjee,et al.  Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii , 2009, Journal of Industrial Microbiology & Biotechnology.

[84]  S. Castanier,et al.  Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony , 1999 .

[85]  Piero Tiano,et al.  Stone reinforcement by calcite crystal precipitation induced by organic matrix macromolecules , 1995 .

[86]  H. Reinhardt,et al.  Permeability and self-healing of cracked concrete as a function of temperature and crack width , 2003 .

[87]  Nele De Belie,et al.  Use of silica gel or polyurethane immobilized bacteria for self-healing concrete , 2012 .

[88]  S. Bang,et al.  Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. , 2001, Enzyme and microbial technology.