Multiple imputation for continuous variables using a Bayesian principal component analysis†
暂无分享,去创建一个
Julie Josse | Vincent Audigier | Franccois Husson | J. Josse | François Husson | V. Audigier | F. Husson
[1] H. Kiers. Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables , 1991 .
[2] B. Escofier. Traitement simultané de variables qualitatives et quantitatives en analyse factorielle , 1979 .
[3] Christian P. Robert,et al. An introduction to the special issue “Joint IMS-ISBA meeting - MCMSki 4” , 2015, Stat. Comput..
[4] A. Gelman,et al. Multiple Imputation for Continuous and Categorical Data: Comparing Joint and Conditional Approaches , 2013 .
[5] H. Kiers. Weighted least squares fitting using ordinary least squares algorithms , 1997 .
[6] Julie Josse,et al. Selecting the number of components in principal component analysis using cross-validation approximations , 2012, Comput. Stat. Data Anal..
[7] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[8] Julie Josse,et al. Handling missing values in exploratory multivariate data analysis methods , 2012 .
[9] B. Efron,et al. Empirical Bayes on vector observations: An extension of Stein's method , 1972 .
[10] Gilbert Saporta,et al. L'analyse des données , 1981 .
[11] A. Gelman,et al. ON THE STATIONARY DISTRIBUTION OF ITERATIVE IMPUTATIONS , 2010, 1012.2902.
[12] Xiao-Li Meng,et al. Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .
[13] Douglas G Altman,et al. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines , 2009, BMC medical research methodology.
[14] James R Carpenter,et al. Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model , 2012, Statistical methods in medical research.
[15] Julie Josse,et al. Adaptive shrinkage of singular values , 2013, Statistics and Computing.
[16] G. King,et al. What to Do about Missing Values in Time‐Series Cross‐Section Data , 2010 .
[17] Jérôme Pagès,et al. Multiple imputation in principal component analysis , 2011, Adv. Data Anal. Classif..
[18] R Bro,et al. Cross-validation of component models: A critical look at current methods , 2008, Analytical and bioanalytical chemistry.
[19] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[20] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[21] Thierry Bertin-Mahieux,et al. The Million Song Dataset , 2011, ISMIR.
[22] A. Gelman,et al. Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box , 2011 .
[23] Stef van Buuren,et al. MICE: Multivariate Imputation by Chained Equations in R , 2011 .
[24] Julie Josse,et al. Regularised PCA to denoise and visualise data , 2013, Stat. Comput..
[25] David E. Booth,et al. Analysis of Incomplete Multivariate Data , 2000, Technometrics.
[26] Andrew B. Nobel,et al. Reconstruction of a low-rank matrix in the presence of Gaussian noise , 2010, J. Multivar. Anal..
[27] M. Greenacre,et al. Multiple Correspondence Analysis and Related Methods , 2006 .
[28] J. Pagès,et al. Gestion des données manquantes en analyse en composantes principales , 2009 .
[29] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[30] D. Rubin. Multiple imputation for nonresponse in surveys , 1989 .
[31] J. Pagès. Multiple Factor Analysis by Example Using R , 2014 .
[32] Ian R White,et al. Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods , 2012, BMC Medical Research Methodology.
[33] P. Bühlmann,et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana , 2004, Genome Biology.
[34] Julie Josse,et al. A principal component method to impute missing values for mixed data , 2013, Adv. Data Anal. Classif..
[35] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[36] S. Huet,et al. Bootstrap Confidence Intervals In Nonlinear Regression Models When The Number of Observations is Fixed and The Variance Tends To 0. Application To Biadditive Models , 1999 .
[37] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[38] J. Josse,et al. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis , 2016 .
[39] H. Joe. Generating random correlation matrices based on partial correlations , 2006 .
[40] Gary King,et al. Amelia II: A Program for Missing Data , 2011 .
[41] Andrew Gelman,et al. Multiple Imputation for Continuous and Categorical Data: Comparing Joint Multivariate Normal and Conditional Approaches , 2014, Political Analysis.
[42] D. Rubin,et al. Fully conditional specification in multivariate imputation , 2006 .
[43] D. Rubin,et al. Small-sample degrees of freedom with multiple imputation , 1999 .