Resonances in the vibrationally resolved excitation functions of b 4Σg-, B 2Σ g- and X 2Πg states of O2+ between 18.5 and 25.0 eV

Branching ratios and vibrationally resolved partial cross sections of O2+ have been measured for the X 2 Pi g, b 4 Sigma g- and B 2 Sigma g- ionic states for photon energies between 18.5 and 25.0 eV,. Vibrational branching ratios for the b 4 Sigma g- and B 2 Sigma g- electronic states show non-Franck-Condon behaviour arising from autoionising Rydberg states and the sigma u shape resonance at around 21.5 eV. A comparison between experiment and existing calculations is presented.

[1]  V. McKoy,et al.  Multiplet‐specific shape resonant features in vibrationally resolved 3σg photoionization of O2 , 1989 .

[2]  T. Reddish,et al.  Autoionisation in hydrogen chloride measured with a position-sensitive photoelectron spectrometer , 1988 .

[3]  A. Yagishita,et al.  Photoionization cross section of the O2+ (B2 Σg−) state in the energy region of 20.3–23.8 eV , 1987 .

[4]  G. E. Leroi,et al.  Non‐Franck–Condon 2σ−1u vibrational distributions in N+2. An interchannel‐coupled shape resonance observed by dispersed fluorescence , 1986 .

[5]  I. Nenner,et al.  Shape resonance and electronic autoionization in vibrationally resolved partial photoionization cross sections of O2 , 1982 .

[6]  I. Nenner,et al.  Vibronic partial photoionization cross sections associated with the ejection of A 3σg electron in the O2 molecule , 1982 .

[7]  D. Dill,et al.  Shape‐resonance‐induced non‐Franck–Condon effects in the valence‐shell photoionization of O2 , 1982 .

[8]  S. Daviel,et al.  A position-senstive detector system for electrons using a charge-coupled device , 1982 .

[9]  I. Nenner,et al.  Autoionization observed in the O+2(A 2Πu→X 2Πg) and O+2(b 4Σ−g→a 4Πu) fluorescence excitation spectra , 1981 .

[10]  H. L. Rouzo,et al.  Theoretical study of shape resonances in the partial photoionization cross sections for the b 4Σg− and B 2Σg− states of O2+ , 1981 .

[11]  J. West,et al.  The effects of autoionisation on vibrational branching ratios and photoelectron angular distributions in molecular photoionisation: the formation of the ground state of O2+ between 574 and 600 AA , 1981 .

[12]  S. Daviel,et al.  An electron spectrometer using a new multidetector system based on a charge-coupled imaging device , 1980 .

[13]  P. W. Langhoff,et al.  Photoexcitation and ionization in molecular oxygen - Theoretical studies of electronic transitions in the discrete and continuous spectral intervals , 1980 .

[14]  L. C. Lee,et al.  0+2 (A 2Πμ→X 2Π= (g−italic)=) and O+2 (b 4Σ−g→a 4Πu) emissions by photoionization of O2 , 1979 .

[15]  Y. Achiba,et al.  Photoelectron angular distribution of simple molecules at 30.4 nm photons , 1979 .

[16]  A. Bianconi,et al.  K-shell photoabsorption spectra of N/sub 2/ and N/sub 2/O using synchrotron radiation , 1978 .

[17]  J. Gardner,et al.  Branching Ratios in Photoelectron Spectroscopy , 1972 .

[18]  A. Smith,et al.  A Discussion on photoelectron spectroscopy - The role of autoionization in molecular photoelectron spectra , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  A. L. Smith,et al.  Effect of autoionization on the production rates of vibrationally excited O2+ by solar photoionization☆ , 1970 .

[20]  R. Madden,et al.  New rydberg series in molecular oxygen near 500 angstrom units. , 1965 .

[21]  F. Gilmore Potential energy curves for N2, NO, O2 and corresponding ions , 1965 .