Trade-offs and synergies in management of two co-occurring specialist squash pests

[1]  A. Wallingford,et al.  Striped cucumber Beetle and Western Striped Cucumber Beetle (Coleoptera: Chrysomelidae) , 2021 .

[2]  M. Evenden,et al.  Local and Landscape-Scale Features Influence Bumble Bee (Hymenoptera: Apidae) Bycatch in Bertha Armyworm Mamestra configurata (Lepidoptera: Noctuidae) Pheromone-Baited Monitoring Traps. , 2020, Environmental entomology.

[3]  A. Agrawal,et al.  Attack and aggregation of a major squash pest: Parsing the role of plant chemistry and beetle pheromones across spatial scales , 2020 .

[4]  A. Agrawal,et al.  Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. , 2020, Plant, cell & environment.

[5]  S. Renner,et al.  Origin and domestication of Cucurbitaceae crops:insights from phylogenies, genomics and archaeology. , 2019, The New phytologist.

[6]  Ayanava Majumdar,et al.  Major Lessons From Large-Scale Trap Cropping Demonstrations for Pest Reduction in Vegetables , 2019, Annals of the Entomological Society of America.

[7]  A. Agrawal,et al.  Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo , 2019, Journal of Chemical Ecology.

[8]  D. Weber Field Attraction of Striped Cucumber Beetles to a Synthetic Vittatalactone Mixture. , 2018, Journal of economic entomology.

[9]  J. Capinera Invasive Stink Bugs and Related Species (Pentatomoidea). Biology, Higher Systematics, Semiochemistry, and Management. , 2018 .

[10]  A. Wallingford,et al.  Avoiding Unwanted Vicinity Effects with Attract-and-Kill Tactics for Harlequin Bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae). , 2018, Journal of Economic Entomology.

[11]  M. Cornelius Ovipositional Preferences of Two Squash Bug Species, Anasa tristis and Anasa armigera (Heteroptera: Coreidae), for Different Cultivars and Species of Cucurbitaceae , 2018, Journal of insect science.

[12]  P. Gregg,et al.  Advances in Attract-and-Kill for Agricultural Pests: Beyond Pheromones. , 2018, Annual review of entomology.

[13]  M. Erb,et al.  Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential. , 2018, Annual review of entomology.

[14]  P. Duyck,et al.  Diet breadth modulates preference - performance relationships in a phytophagous insect community , 2017, Scientific Reports.

[15]  T. Kuhar,et al.  A Survey of the Species of Squash Bug (Hemiptera: Coreidae) Egg Parasitoids in Virginia and Their Distribution , 2017, Journal of Economic Entomology.

[16]  M. Payton,et al.  Companion planting with white yarrow or with feverfew for squash bug, Anasa tristis (Hemiptera: Coreidae), management on summer squash. , 2017, Pest management science.

[17]  S. Braman,et al.  Assessment of Habitat Modification and Varied Planting Dates to Enhance Potential Natural Enemies of Anasa tristis (Hemiptera: Coreidae) in Squash , 2017, Environmental Entomology.

[18]  J. Ali,et al.  Choosy mothers pick challenging plants: maternal preference and larval performance of a specialist herbivore are not linked , 2017 .

[19]  Lori R. Spears,et al.  Pheromone Lure and Trap Color Affects Bycatch in Agricultural Landscapes of Utah , 2016, Environmental Entomology.

[20]  M. Mazourek,et al.  Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference , 2016, Horticulture Research.

[21]  M. Cornelius,et al.  Impact of the Egg Parasitoid, Gryon pennsylvanicum (Hymenoptera: Scelionidae), on Sentinel and Wild Egg Masses of the Squash Bug (Hemiptera: Coreidae) in Maryland , 2016, Environmental Entomology.

[22]  T. Kuhar,et al.  Squash Bug (Hemiptera: Coreidae): Biology and Management in Cucurbitaceous Crops , 2016 .

[23]  G. Besnard Origin and Domestication , 2016 .

[24]  M. Gardiner,et al.  Does local habitat management or large-scale landscape composition alter the biocontrol services provided to pumpkin agroecosystems? , 2016 .

[25]  M. Mazourek,et al.  Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering , 2015, Environmental entomology.

[26]  Peter Anderson,et al.  Insect host plant selection in complex environments. , 2015, Current opinion in insect science.

[27]  A. Kessler The information landscape of plant constitutive and induced secondary metabolite production. , 2015, Current opinion in insect science.

[28]  L. S. Adler,et al.  Attracting mutualists and antagonists: plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds. , 2014, American journal of botany.

[29]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[30]  P. Klinkhamer,et al.  Cross‐resistance of chrysanthemum to western flower thrips, celery leafminer, and two‐spotted spider mite , 2014 .

[31]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[32]  D. Fujita,et al.  Rice Resistance to Planthoppers and Leafhoppers , 2013 .

[33]  H. Paris History of the Cultivar‐Groups of Cucurbita pepo , 2010 .

[34]  J. V. van Loon,et al.  Herbivore‐induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack , 2010 .

[35]  T. Roslin,et al.  A meta-analysis of preference-performance relationships in phytophagous insects. , 2010, Ecology letters.

[36]  M. Hoffmann,et al.  Seasonal incidence of two co-occurring adult parasitoids of Acalymma vittatum in New York State: Centistes (Syrrhizus) diabroticae and Celatoria setosa , 2010, BioControl.

[37]  L. S. Adler,et al.  Comparison of Perimeter Trap Crop Varieties: Effects on Herbivory, Pollination, and Yield in Butternut Squash , 2009, Environmental entomology.

[38]  M. Stout,et al.  Keys to the Increased Use of Host Plant Resistance in Integrated Pest Management , 2009 .

[39]  Rajinder Peshin,et al.  Integrated Pest Management: Innovation-Development Process , 2009 .

[40]  C. Rodriguez‐Saona,et al.  Behavior-Modifying Strategies in IPM: Theory and Practice , 2009 .

[41]  T. Meiners,et al.  Foraging behavior of egg parasitoids exploiting chemical information , 2008 .

[42]  Richard A. Lankau Specialist and generalist herbivores exert opposing selection on a chemical defense. , 2007, The New phytologist.

[43]  W. Foley,et al.  Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores , 2007, Oecologia.

[44]  J. Pickett,et al.  The use of push-pull strategies in integrated pest management. , 2007, Annual review of entomology.

[45]  R. Metcalf,et al.  Identification of a volatile attractant forDiabrotica andAcalymma spp. from blossoms ofCucurbita maxima duchesne , 1986, Journal of Chemical Ecology.

[46]  S. Foster,et al.  Vittatalactone, a beta-lactone from the striped cucumber beetle, Acalymma vittatum. , 2005, Journal of natural products.

[47]  Chun Ming Wang,et al.  Inheritance and QTL Mapping of Antibiosis to Green Leafhopper in Rice , 2004 .

[48]  M. Hoffmann,et al.  A Male-Produced Aggregation Pheromone Facilitating Acalymma vittatum [F.] (Coleoptera: Chrysomelidae) Early-Season Host Plant Colonization , 2003, Journal of Insect Behavior.

[49]  James R. Miller,et al.  Stimulo-deterrent diversion: A concept and its possible application to onion maggot control , 1990, Journal of Chemical Ecology.

[50]  D. Margolies,et al.  Rapid adaptation of squash bug, Anasa tristis, populations to a resistant cucurbit cultivar , 1998 .

[51]  D. Tallamy,et al.  Long- and Short-Term Effect of Cucurbitacin Consumption on Acalymma vittatum (Coleoptera: Chrysomelidae) Fitness , 1997 .

[52]  R. Mithen,et al.  The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests , 1995 .

[53]  W. S. Fargo,et al.  Ovipositional Preference of Squash Bugs (Heteroptera: Coreidae) Among Cucurbits in Oklahoma , 1990 .

[54]  W. S. Fargo,et al.  Host effects on the survival and development of Anasa tristis (Heteroptera: Coreidae) , 1989 .

[55]  E. Heinrichs Perspectives and directions for the continued development of insect-resistant rice varieties , 1986 .

[56]  J. Hanula,et al.  Pheromone Cross-attraction and Inhibition Among Four Coneworms, Dioryctria spp. (Lepidoptera: Pyralidae) in a Loblolly Pine Seed Orchard , 1984 .

[57]  A. M. Rhodes,et al.  Influence of Cucurbitacin Content in Cotyledons of Cucurbitaceae Cultivars upon Feeding Behavior of Diabroticina Beetles (Coleoptera: Chrysomelidae) , 1983 .

[58]  Richard E. White Sexual Characters of Species of Diabrotica (Chrysomelidae: Coleoptera) , 1977 .

[59]  A. M. Rhodes,et al.  Phytophagous Insect Associations with Cucurbita in Illinois , 1976 .

[60]  A. M. Rhodes,et al.  Host Preferences of Acalymma vittatum (Coleoptera: Chrysomelidae) among Certain Cucurbitaceae , 1972 .

[61]  C. M. Jones,et al.  Cucumber Beetle Resistance and Mite Susceptibility Controlled by the Bitter Gene in Cucumis sativus L , 1971, Science.

[62]  C. V. Hall,et al.  Interrelations of the Squash Bug, Anasa tristis, and Six Varieties of Squash (Cucurbita Spp.) , 1962 .