Biocompatible Silk Printed Optical Waveguides

[*] Prof. F. G. Omenetto, P. Domachuk, J. Amsden, J. Bressner Department of Biomedical Engineering and Department of Physics Tufts University, 4 Colby Street Medford, MA 02155 (USA) E-mail: fiorenzo.omenetto@tufts.edu S. T. Parker, Prof. J. A. Lewis Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign 1304 West Green Street, Urbana, IL 61801 (USA)

[1]  Peng Xu,et al.  Biomaterial coatings by stepwise deposition of silk fibroin. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[2]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[3]  David L. Kaplan,et al.  Direct‐Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications , 2008 .

[4]  Ung-Jin Kim,et al.  Structure and properties of silk hydrogels. , 2004, Biomacromolecules.

[5]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[6]  J. Peterson,et al.  Fiber-optic sensors for biomedical applications. , 1984, Science.

[7]  Mariusz Twardowski,et al.  Sol‐Gel Inks for Direct‐Write Assembly of Functional Oxides , 2007 .

[8]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[9]  Ray Gunawidjaja,et al.  Mechanical Properties of Robust Ultrathin Silk Fibroin Films , 2007 .

[10]  Mark Cronin-Golomb,et al.  Bioactive silk protein biomaterial systems for optical devices. , 2008, Biomacromolecules.

[11]  J. Lewis,et al.  Microperiodic structures: Direct writing of three-dimensional webs , 2004, Nature.

[12]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[13]  Ralph Müller,et al.  Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. , 2007, Biomaterials.

[14]  J. Fujimoto,et al.  Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. , 2000, Neoplasia.

[15]  J. Cesarano,et al.  Directed colloidal assembly of 3D periodic structures , 2002 .

[16]  David L Kaplan,et al.  Electrospinning Bombyx mori silk with poly(ethylene oxide). , 2002, Biomacromolecules.

[17]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[18]  D. Kaplan,et al.  Mechanisms of silk fibroin sol-gel transitions. , 2006, The journal of physical chemistry. B.

[19]  David L. Kaplan,et al.  Nano‐ and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films , 2008 .

[20]  David L Kaplan,et al.  Nanolayer biomaterial coatings of silk fibroin for controlled release. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[21]  Larry R. Dalton,et al.  Polymer-based optical waveguides: Materials, processing, and devices , 2002 .

[22]  Robert Langer,et al.  Silk Fibroin Microfluidic Devices , 2007, Advanced materials.

[23]  C. Contag,et al.  It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology , 2002, Journal of magnetic resonance imaging : JMRI.

[24]  J. Fujimoto Optical coherence tomography for ultrahigh resolution in vivo imaging , 2003, Nature Biotechnology.